Skip to main content
Log in

Naphthoquinolizinium derivatives as a novel platform for DNA-binding and DNA-photodamaging chromophores

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The association of the naphtho[1,2-b]quinolizinium bromide (5a) and naphtho[2,1-b]quinolizinium bromide (5b) with DNA and the propensity of these cationic arenes to damage DNA after UV-A irradiation have been studied. Spectrophotometric and fluorimetric titrations show that the two isomers 5a and 5b bind to DNA (K ≈ 105 M-1). The highest affinity was observed for GC base pairs. The mode of binding was investigated by CD and LD spectroscopy. Whereas quinolizinium 5a exclusively intercalates in DNA, the isomer 5b exhibits a deviation from perfect intercalation into the double helix. Moreover, efficient DNA damage was observed on UV-A irradiation in the presence of the quinolizinium salts. Primer extension analysis indicates that the photocleavage takes place preferentially at guanine-rich regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. LePecq and C. A. Paoletti, A fluorescent complex between ethidium bromide and nucleic acids: physical-chemical characterisation, J. Mol. Biol., 1967, 27, 87–106.

    Article  CAS  Google Scholar 

  2. L. S. Lermann, Structural consideration on the intercalation of DNA and acridines, J. Mol. Biol., 1961, 3, 18–30.

    Article  Google Scholar 

  3. A. Slama-Schwok, M. Rougée, V. Ibanez, N. E. Geacintov, A. T. Montenay-Garestier, J. M. Lehn and C. Hélène, Interactions of the dimethyldiazaperopyrenium dication with nucleic acids. Binding to double-stranded polynucleotides, Biochemistry, 1989, 28, 3227–3234.

    Article  CAS  Google Scholar 

  4. E. Tuite and J. M. Kelly, Photochemical interactions of methylene blue and analogues with DNA and other biological substrates, J. Photochem. Photobiol. B: Biol., 1993, 21, 103–124.

    Article  CAS  Google Scholar 

  5. T. C. Jenkins, Targeting multi-stranded DNA structure, Curr. Med. Chem., 2000, 7, 99–115.

    Article  CAS  Google Scholar 

  6. J. L. Mergny and C. Hélène, G-quadruplex DNA: A target for drug design, Nat. Med., 1998, 4, 1366–1367.

    Article  CAS  Google Scholar 

  7. B. Armitage, Photocleavage of Nucleic Acids, Chem. Rev., 1998, 98, 1171–1200.

    Article  CAS  Google Scholar 

  8. I. E Kochevar and D. D. Dunn, in Bioorganic Photochemistry, ed. H. Morrison, John Wiley and Sons, New York, 1990, pp. 273–315.

  9. W. K. Pogozelski and T. D. Tullius, Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety, Chem. Rev., 1998, 98, 1089–1101.

    Article  CAS  Google Scholar 

  10. M. M. Greenberg, Investigating nucleic acid damage processes via independent generation of reactive intermediates, Chem. Res. Toxicol., 1998, 11, 1235–1248.

    Article  CAS  Google Scholar 

  11. S. J. Wagner, A. Skripchenko, D. Robinette, J. W. Foley and L. Cincotta, Factors affecting virus photoinactivation by a series of phenothiazine dyes, Photochem. Photobiol., 1998, 67, 343–349.

    Article  CAS  Google Scholar 

  12. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Res., 1998, 90, 889–905.

    Article  CAS  Google Scholar 

  13. W. D. Wilson, A. N. Gough, J. J. Doyle and M. W. Davidson, Coralyne. Intercalation with DNA as a possible mechanism of antileukemic action, J. Med. Chem., 1976, 19, 1261–1263.

    Article  CAS  Google Scholar 

  14. D. S. Pilch, C. Yu, D. Makhey, E. J. LaVoie, A. R. Srinivasan, W. K. Olson, R. S. Sauers, K. J. Breslauer, N. E. Geacintov and L. F. Liu, Minor groove-directed and intercalative ligand-DNA interactions in the poisoning of human DNA topoisomerase I by protoberberine analogs, Biochemistry, 1997, 36, 12542–12553.

    Article  CAS  Google Scholar 

  15. A. Molina, J. J. Vaquero, J. L. Garcia-Navio, J. Alvarez-Builla, B. de Pascal-Teresa, F. Gado and M. M. Rodrigo, Novel DNA intercalators based on the pyridazino[1’,6’:1,2]pyrido[4,3-b]indol-5-inium system, J. Org. Chem., 1999, 64, 3907–3915.

    Article  CAS  Google Scholar 

  16. H. Ihmels, B. Engels, K. Faulhaber and C. Lennartz, New dyes based on amino-substituted acridizinium salts. Synthesis and exceptional photochemical properties, Chem. Eur. J., 2000, 6, 2854–2864.

    Article  CAS  Google Scholar 

  17. H. Ihmels, K. Faulhaber, C. Sturm, G. Bringmann, K. Messer, N. Gabellini, D. Vedaldi and G. Viola, Acridizinium salts as a novel class of DNA-binding and site-selective DNA-photodamaging chromophores, Photochem. Photobiol., 2001, 74, 505–512.

    Article  CAS  Google Scholar 

  18. H. Ihmels, G. Bringmann, K. Faulhaber, K. Messer, C. Sturm, D. Vedaldi and G. Viola, Synthesis and investigation of the DNA-binding and DNA-photodamaging properties of indolo[2,3b]-quinolizinium, Eur. J. Org. Chem., 2001, 6, 1157–1161.

    Article  Google Scholar 

  19. J. Pastor, J. G. Siro, J. L. Garcia-Navio, J. J. Vaquero, J. Alvarez-Builla, F. Gago, B. de Pascual-Teresa, M. Pastor and M. M. Rodrigo, Azino-fused benzimidazolium salts as DNA intercalating agents. 2, J. Org. Chem., 1997, 62, 5476–5483.

    Article  CAS  Google Scholar 

  20. C. K. Bradsher and L. E. Beavers, Aromatic cyclodehydration. XXXI. New polycyclic aromatic systems containing the quinolizinium nucleus, J. Am. Chem. Soc., 1956, 78, 2459–2462.

    Article  CAS  Google Scholar 

  21. J. Rebek, Molecular recognition with model system, Angew. Chem., Int. Ed. Engl., 1990, 29, 245–255.

    Article  Google Scholar 

  22. G. Scatchard, The attraction of proteins for small molecules and ions, Ann. N. Y. Acad. Sci., 1949, 51, 660–672.

    Article  CAS  Google Scholar 

  23. D. McGhee and P. H. von Hippel, Theoretical aspects of DNAprotein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimentional homogeneus lattice, J. Mol. Biol., 1974, 86, 469–489.

    Article  CAS  Google Scholar 

  24. G. Viola, E. Uriarte, O. Gia and S. Moro, Interactions between DNA and new benzopsoralen derivatives: thermodynamic and molecular modeling studies, Farmaco, 2000, 55, 276–286.

    Article  CAS  Google Scholar 

  25. W. Adam, S. Marquardt and C. R. Saha-Moller, Oxidative DNA Damage in the Photolysis of N-hydroxy-2-Pyridone, a Specific Hydroxyl-Radical Source, Photochem. Photobiol., 1999, 70, 287–291.

    CAS  Google Scholar 

  26. C. V. Kumar, H. E. Punzalan and W. B. Tan, Adenine-Thymine base pair recognition by an anthryl probe from the DNA minor groove, Tetrahedron, 2000, 56, 7072–7040.

    Article  Google Scholar 

  27. R. Ostaszewski, E. Wilnczynska and M. Wolsczak, The synthesis of a new type of anthracene DNA intercalator, Bioorg. Med. Chem. Lett., 1998, 8, 2995–2996.

    Article  CAS  Google Scholar 

  28. F. Sanger, S. Nicklen and A. R. Coulsen, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA, 1977, 74, 5463–5467.

    Article  CAS  Google Scholar 

  29. W. D. Wilson, Nucleic Acids in Chemistry and Biology, ed. G. M. Blackburn and M. J. Gait, IRL Press, Oxford, UK, 2nd edn. pp. 329–374.

  30. H. Ihmels, C. J. Mohrschladt, A. Schmitt, M. Bressanini, D. Leusser and D. Stalke, Highly Regioselective Solid-State Photodimerization of Naphthoquinolizinium Salts, Eur. J. Org. Chem., 2002, 15, 2624–2632.

    Article  Google Scholar 

  31. D. T. Breslin and G. B. Schuster, Anthraquinone photonucleases: mechanism for GG-selective and nonselective cleavage of double stranded DNA, J. Am. Chem. Soc., 1996, 118, 2311–2319.

    Article  CAS  Google Scholar 

  32. M. Saito, H. Takayama, K. Sugiyama, K. Nakatani, K. Tsuchida and M. Yamamoto, Photoinduced DNA cleavage by electron transfer: demonstration that guanine residues located 5’ to guanine are the most electron donating sites, J. Am. Chem. Soc., 1995, 117, 6406–6407.

    Article  CAS  Google Scholar 

  33. J. E. Rogers, S. J. Weiss and L. A. Kelly, Photoprocesses of naphthalene imide and diimide derivatives in aqueous solution of DNA, J. Am. Chem. Soc., 2000, 122, 427–436.

    Article  CAS  Google Scholar 

  34. S. Steenken and S. Jovanovic, How easily oxidizable is DNA? Oneelectron reduction potentials of adenosine and guanosine radicals in aqueous solution, J. Am. Chem. Soc., 1997, 119, 617–618.

    Article  CAS  Google Scholar 

  35. C. J. Burrows and J. G. Muller, Oxidative nucleobase modification leading to strand scission, Chem. Rev., 1998, 98, 1109–1151.

    Article  CAS  Google Scholar 

  36. B. Norden, M. Kubista and T. Kurucsev, Linear dichroism spectroscopy of nucleic acid, Q. Rev. Biophys., 1992, 25, 51–171.

    Article  CAS  Google Scholar 

  37. B. Norden and T. Kurucsev, Analysing DNA complexes by circular and linear dichroism, J. Mol. Recognit., 1994, 7, 141–156.

    Article  CAS  Google Scholar 

  38. C. Bailly, J. P. Henichart, P. Colson and C. J. Houssier, Drug-DNA sequence dependent interactions analysed by electric linear dichroism, J. Mol. Recognit., 1992, 5, 155–171.

    Article  CAS  Google Scholar 

  39. C. Hiort, P. Lincoln and B. Norden, DNA binding of Δ and Λ-[Ru(Phen)2DPPZ]2+, J. Am. Chem. Soc., 1993, 115, 3448–3454.

    Article  CAS  Google Scholar 

  40. G. Behravan, M. Leijon, U. Sehlsted, B. Norden, H. Vallberg, J. Bergman and A. Graslund, The interaction of ellipticine derivatives with nucleic acids studied by optical and 1H-NMR spectroscopy: effect of size of the heterocyclic ring system, Biopolymers, 1994, 34, 599–609.

    Article  CAS  Google Scholar 

  41. A. Larsson, C. Carlsson, M. Jonsson and B. Albisson, Characterisation of the binding of the fluorescent dye YO and YOYO to DNA by polarised light spectroscopy, J. Am. Chem. Soc., 1994, 116, 8459–8465.

    Article  CAS  Google Scholar 

  42. E. Tuite and B. Norden, Sequence-specific interactions of methylene blue with polynucleotides and DNA: a spectroscopic study, J. Am. Chem. Soc., 1994, 116, 7548–7556.

    Article  CAS  Google Scholar 

  43. P. J. Chou and W. C. Johonson Jr., Base inclination in natural and synthetic DNAs, J Am. Chem. Soc., 1993, 115, 1205–1210.

    Article  CAS  Google Scholar 

  44. R. Lyng, T. Hard and B. Norden, Induced circular dichroism of DNA intercalators: electric dipole allowed transitions, Biopolymers, 1987, 26, 1327–1345.

    Article  CAS  Google Scholar 

  45. One referee pointed out that the agarose assay that involves the use of plasmid leads often to an overestimation of DNA strand breaks because base modifications may also lead to plasmid relaxation. This is true, but since we showed that 8-oxoGua, i.e. the commonly observed base modification, is not formed it is evident that the detected formation of open-circular plasmid reflects the amount of single-strand breaks.

  46. G. Behrens, G. Kotzenburg and D. Schulte-Frohlinde, Model reactions for the degradation of DNA-4’ radicals in aqueous solution. Fast hydrolysis of α-alkoxyalkyl radicals with a leaving group in β position followed by radical rearrangement and elimination reactions, Z. Naturforsch., C, 1982, 37, 1205–1227.

    Article  Google Scholar 

  47. B. Giese, X. Beyrich-Graf, J. Burger, C. Kesselheim, M. Senn and T. Schafer, The mechanism of anaerobic, radical-induced DNA strand, Angew. Chem., Int. Ed. Engl., 1993, 32, 1742–1743.

    Article  Google Scholar 

  48. Protonated pyridine derivatives were proposed to abstract hydrogen atoms by a similar mechanism: D. G. Whitten in Photochemistry of Heterocyclic Compounds, ed. O. Buchardt, Wiley Interscience, New York, 1976, pp. 524–573.

  49. F. Lin, S. Z. D. Cheng and F. W. Harris, Aromatic poly(pyridinium salt)s. Part 3. Photoreduction in amide solvents, Polymer, 2002, 43, 3421–3430.

    Article  CAS  Google Scholar 

  50. For a discussion on the hydrogen abstraction by the guanine radical (cation) see: S. Steenken, S. V. Jovanovic, L. P. Candeias and J. Reynisson, Is “Frank” DNA-Strand Breakage via the Guanine Radical Thermodynamically and Sterically Possible, Chem. Eur. J., 2001, 7, 2829–2833 and references given therein.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was generously financed by the Bundesministerium für Bildung und Forschung, the Deutsche Forschungsgemeinschaft, the Deutscher Akademischer Austauschdienst and CRUI (Vigoni programm) and the Fonds der Chemischen Industrie. H. I. thanks Prof. Waldemar Adam for generous support and encouragement. We thank Dr. Stefan Marquardt for help with the determination of 8-oxoGua and one referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampietro Viola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viola, G., Bressanini, M., Gabellini, N. et al. Naphthoquinolizinium derivatives as a novel platform for DNA-binding and DNA-photodamaging chromophores. Photochem Photobiol Sci 1, 882–889 (2002). https://doi.org/10.1039/B204275D

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/B204275D

Navigation