Skip to main content

Advertisement

Log in

Full-length ADAMTS-1 and the ADAMTS-1 fragments display pro- and antimetastatic activity, respectively

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

The exact role of a disintegrin and metalloproteinase with thrombospondin motifs-1 (ADAMTS-1) and the underlying mechanism of its involvement in tumor metastasis have not been established. We have now demonstrated that overexpression of ADAMTS-1 promotes pulmonary metastasis of TA3 mammary carcinoma and Lewis lung carcinoma cells and that a proteinase-dead mutant of ADAMTS-1 (ADAMTS-1E/Q) inhibits their metastasis, indicating that the prometastatic activity of ADAMTS-1 requires its metalloproteinase activity. Overexpression of ADAMTS-1 in these cells promoted tumor angiogenesis and invasion, shedding of the transmembrane precursors of heparin-binding epidermal growth factor (EGF) and amphiregulin (AR), and activation of the EGF receptor and ErbB-2, while overexpression of ADAMTS-1E/Q inhibited these events. Furthermore, we found that ADAMTS-1 undergoes auto-proteolytic cleavage to generate the NH2- and COOH-terminal cleavage fragments containing at least one thrombospondin-type-I-like motif and that overexpression of the NH2-terminal ADAMTS-1 fragment and the COOH-terminal ADAMTS-1 fragment can inhibit pulmonary tumor metastasis. These fragments also inhibited Erk1/2 kinase activation induced by soluble heparin-binding EGF and AR. Taken together, our results suggest that the proteolytic status of ADAMTS-1 determines its effect on tumor metastasis, and that the ADAMTS-1E/Q and the ADAMTS-1 fragments likely inhibit tumor metastasis by negatively regulating the availability and activity of soluble heparin-binding EGF and AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

ADAMTS-1:

a disintegrin and metalloproteinase with thrombospondin motifs-1

ADAMTS-1E/Q:

a protease-dead ADAMTS-1 mutant

ADAMTS-1NTF:

the NH2-terminal ADAMTS-1 fragment

ADAMTS-1CTF:

the COOH-terminal ADAMTS-1 fragment

ADAMTSNTCF:

the NH2-terminal cleavage fragment of ADAMTS-1

ADAMTSCTCF:

the COOH-terminal cleavage of ADAMTS-1

APMA:

p-aminophenylmercuric acetate

AR:

amphiregulin

bFGF:

basic fibroblast growth factor

BrdU:

5-bromo-2′-deoxy-uridine

CMFDA:

Green 5-chloromethyl-fluorescein diacetate

Cys-rich:

cysteine-rich

DMEM:

Dulbecco's modified Eagle's medium

ECM:

extracellular matrix

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

FBS:

fetal bovine serum

GAG:

glycosaminoglycans

GF:

growth factors

HS:

heparan sulfate

HSPGs:

heparan sulfate proteoglycans

HB-EGF:

heparin-binding epidermal growth factor

H&E:

hematoxylin and eosin

HUVECs:

human umbilical vein endothelial cells

kDa:

kilodalton

LLC:

Lewis lung carcinoma

MMP:

matrix metalloproteinase

RT–PCR:

reverse transcriptase–polymerase chain reaction

PKC:

protein kinase C

TA3:

TA3 murine mammary carcinoma

TPA:

12-O-tetradecanoyl-phorbol-13-acetate

TSP-1:

thrombospondin type I-like

Tsp-1:

thrombospondin-1

Tsp-2:

thrombospondin-2

VEGF:

vascular endothelial growth factor

vWF:

von Willebrand factor

References

  • Adams JC . (2001). Annu Rev Cell Dev Biol 17: 25–51.

  • Billings SD, Southall MD, Li T, Cook PW, Baldridge L, Moores WB et al. (2003). Am J Pathol 163: 2451–2458.

  • Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF et al. (1997). Nature 385: 729–733.

  • Blobel CP . (2000). Curr Opin Cell Biol 12: 606–612.

  • Bostwick DG, Qian J, Maihle NJ . (2004). Prostate 58: 164–168.

  • Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett PT, Leahy DJ et al. (2003). Mol Cell 12: 541–552.

  • Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, Lopez-Otin C . (2002). Gene 283: 49–62.

  • Colige A, Ruggiero F, Vandenberghe I, Dubail J, Kesteloot F, Van Beeumen J et al. (2005). J Biol Chem 280: 34397–34408.

  • Cook PW, Pittelkow MR, Keeble WW, Graves-Deal R, Coffey Jr RJ, Shipley GD . (1992). Cancer Res 52: 3224–3227.

  • Ebert M, Yokoyama M, Kobrin MS, Friess H, Lopez ME, Buchler MW et al. (1994). Cancer Res 54: 3959–3962.

  • Flannery CR, Zeng W, Corcoran C, Collins-Racie LA, Chockalingam PS, Hebert T et al. (2002). J Biol Chem 277: 42775–42780.

  • Gschwind A, Hart S, Fischer OM, Ullrich A . (2003). EMBO J 22: 2411–2421.

  • Hamid AS, O'Donnell AL, Balu D, Pohl MB, Seyler MJ, Mohamed S et al. (2000). Cancer Res 60: 7094–7098.

  • Harris RC, Chung E, Coffey RJ . (2003). Exp Cell Res 284: 2–13.

  • Herren B . (2002). News Physiol Sci 17: 73–76.

  • Iruela-Arispe ML, Carpizo D, Luque A . (2003). Ann NY Acad Sci 995: 183–190.

  • Iruela-Arispe ML, Lombardo M, Krutzsch HC, Lawler J, Roberts DD . (1999). Circulation 100: 1423–1431.

  • Iwamoto R, Yamazaki S, Asakura M, Takashima S, Hasuwa H, Miyado K et al. (2003). Proc Natl Acad Sci USA 100: 3221–3226.

  • Jackson LF, Qiu TH, Sunnarborg SW, Chang A, Zhang C, Patterson C et al. (2003). EMBO J 22: 2704–2716.

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. (2003). Cancer Cell 3: 537–549.

  • Kitadai Y, Yasui W, Yokozaki H, Kuniyasu H, Ayhan A, Haruma K et al. (1993). Jpn J Cancer Res 84: 879–884.

  • Kuno K, Bannai K, Hakozaki M, Matsushima K, Hirose K . (2004). Biochem Biophys Res Commun 319: 1327–1333.

  • Kuno K, Kanada N, Nakashima E, Fujiki F, Ichimura F, Matsushima K . (1997). J Biol Chem 272: 556–562.

  • Kuno K, Matsushima K . (1998). J Biol Chem 273: 13912–13917.

  • Kuno K, Okada Y, Kawashima H, Nakamura H, Miyasaka M, Ohno H et al. (2000). FEBS Lett 478: 241–245.

  • Kuno K, Terashima Y, Matsushima K . (1999). J Biol Chem 274: 18821–18826.

  • Lee DC, Sunnarborg SW, Hinkle CL, Myers TJ, Stevenson MY, Russell WE et al. (2003). Ann NY Acad Sci 995: 22–38.

  • LeJeune S, Leek R, Horak E, Plowman G, Greenall M, Harris AL . (1993). Cancer Res 53: 3597–3602.

  • Luque A, Carpizo DR, Iruela-Arispe ML . (2003). J Biol Chem 278: 23656–23665.

  • Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR et al. (2002). Science 295: 140–143.

  • Massagué J, Pandiella A . (1993). Annu Rev Biochem 62: 515–541.

  • Masui T, Hosotani R, Tsuji S, Miyamoto Y, Yasuda S, Ida J et al. (2001). Clin Cancer Res 7: 3437–3443.

  • Merlos-Suarez A, Ruiz-Paz S, Baselga J, Arribas J . (2001). J Biol Chem 276: 48510–48517.

  • Miao WM, Seng WL, Duquette M, Lawler P, Laus C, Lawler J . (2001). Cancer Res 61: 7830–7839.

  • Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M et al. (2005). J Clin Invest 115: 44–55.

  • Miyamoto S, Hirata M, Yamazaki A, Kageyama T, Hasuwa H, Mizushima H et al. (2004). Cancer Res 64: 5720–5727.

  • Nokihara H, Yanagawa H, Nishioka Y, Yano S, Mukaida N, Matsushima K et al. (2000). Cancer Res 60: 7002–7007.

  • Normanno N, Kim N, Wen D, Smith K, Harris AL, Plowman G et al. (1995). Breast Cancer Res Treat 35: 293–297.

  • O'Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J . (1999). Science 285: 1926–1928.

  • Panico L, D'Antonio A, Salvatore G, Mezza E, Tortora G, De Laurentiis M et al. (1996). Int J Cancer 65: 51–56.

  • Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC et al. (1998). Science 282: 1281–1284.

  • Pfeifer A, Kessler T, Silletti S, Cheresh DA, Verma IM . (2000). Proc Natl Acad Sci USA 97: 12227–12232.

  • Porter S, Clark IM, Kevorkian L, Edwards DR . (2005). Biochem J 386: 15–27.

  • Porter S, Scott SD, Sassoon EM, Williams MR, Jones JL, Girling AC et al. (2004). Clin Cancer Res 10: 2429–2440.

  • Rodriguez-Manzaneque JC, Milchanowski AB, Dufour EK, Leduc R, Iruela-Arispe ML . (2000). J Biol Chem 275: 33471–33479.

  • Russell DL, Doyle KM, Ochsner SA, Sandy JD, Richards JS . (2003). J Biol Chem 278: 42330–42339.

  • Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J et al. (2004). J Cell Biol 164: 769–779.

  • Salomon DS, Normanno N, Ciardiello F, Brandt R, Shoyab M, Todaro GJ . (1995). Breast Cancer Res Treat 33: 103–114.

  • Sandy JD, Westling J, Kenagy RD, Iruela-Arispe ML, Verscharen C, Rodriguez-Mazaneque JC et al. (2001). J Biol Chem 276: 13372–13378.

  • Shindo T, Kurihara H, Kuno K, Yokoyama H, Wada T, Kurihara Y et al. (2000). J Clin Invest 105: 1345–1352.

  • Stern DF . (2000). Breast Cancer Res 2: 176–183.

  • Sternlicht MD, Werb Z . (2001). Annu Rev Cell Dev Biol 17: 463–516.

  • Streit M, Velasco P, Riccardi L, Spencer L, Brown LF, Janes L et al. (2000). EMBO J 19: 3272–3282.

  • Sunnarborg SW, Hinkle CL, Stevenson M, Russell WE, Raska CS, Peschon JJ et al. (2002). J Biol Chem 277: 12838–12845.

  • Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N . (1993). J Cell Biol 122: 497–511.

  • Tucker RP . (2004). Int J Biochem Cell Biol 36: 969–974.

  • Vazquez F, Hastings G, Ortega MA, Lane TF, Oikemus S, Lombardo M et al. (1999). J Biol Chem 274: 23349–23357.

  • Visscher DW, Sarkar FH, Kasunic TC, Reddy KB . (1997). Breast Cancer Res Treat 45: 75–80.

  • Volpert OV, Lawler J, Bouck NP . (1998). Proc Natl Acad Sci USA 95: 6343–6348.

  • Xu Y, Liu YJ, Yu Q . (2004a). Cancer Res 64: 6119–6126.

  • Xu Y, Liu YJ, Yu Q . (2004b). J Biol Chem 279: 41179–41188.

  • Xu Y, Yu Q . (2003). J Biol Chem 278: 8661–8668.

  • Yamazaki S, Iwamoto R, Saeki K, Asakura M, Takashima S, Yamazaki A et al. (2003). J Cell Biol 163: 469–475.

  • Yarden Y, Sliwkowski MX . (2001). Nat Rev Mol Cell Biol 2: 127–137.

  • Yee KO, Streit M, Hawighorst T, Detmar M, Lawler J . (2004). Am J Pathol 165: 541–552.

  • Yi M, Ruoslahti E . (2001). Proc Natl Acad Sci USA 98: 620–624.

  • Yu Q, Stamenkovic I . (1999). Genes and Dev 13: 35–48.

  • Yu Q, Stamenkovic I . (2000). Genes and Dev 14: 163–176.

  • Yu Q, Toole BP, Stamenkovic I . (1997). J Exp Med 186: 1985–1996.

Download references

Acknowledgements

We thank Dr Deborah McClellan for excellent editorial assistance. This work was supported by a fund from NIH (RO1HL074117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Yj., Xu, Y. & Yu, Q. Full-length ADAMTS-1 and the ADAMTS-1 fragments display pro- and antimetastatic activity, respectively. Oncogene 25, 2452–2467 (2006). https://doi.org/10.1038/sj.onc.1209287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209287

  • Springer Nature Limited

Keywords

This article is cited by

Navigation