Skip to main content
Log in

Genes for all metals—a bacterial view of the Periodic Table

The 1996 Thom Award Lecture

  • Published:
Journal of Industrial Microbiology and Biotechnology

Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4 +, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, PO4 3-, SO4 2- and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+ AsO2 -, AsO4 3-, Cd2+, Co2+, CrO4 2−, Cu2+, Hg2+, Ni2+, Pb2+, TeO3 2−, TI+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd2+-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [γ-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson’s disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 08 August 1997/ Accepted in revised form 01 November 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silver, S. Genes for all metals—a bacterial view of the Periodic Table . J Ind Microbiol Biotech 20, 1–12 (1998). https://doi.org/10.1038/sj.jim.2900483

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jim.2900483

Navigation