Skip to main content
Log in

From Gene Editing to Biofilm Busting: CRISPR-CAS9 Against Antibiotic Resistance—A Review

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In recent decades, the development of novel antimicrobials has significantly slowed due to the emergence of antimicrobial resistance (AMR), intensifying the global struggle against infectious diseases. Microbial populations worldwide rapidly develop resistance due to the widespread use of antibiotics, primarily targeting drug-resistant germs. A prominent manifestation of this resistance is the formation of biofilms, where bacteria create protective layers using signaling pathways such as quorum sensing. In response to this challenge, the CRISPR-Cas9 method has emerged as a ground-breaking strategy to counter biofilms. Initially identified as the “adaptive immune system” of bacteria, CRISPR-Cas9 has evolved into a state-of-the-art genetic engineering tool. Its exceptional precision in altering specific genes across diverse microorganisms positions it as a promising alternative for addressing antibiotic resistance by selectively modifying genes in diverse microorganisms. This comprehensive review concentrates on the historical background, discovery, developmental stages, and distinct components of CRISPR Cas9 technology. Emphasizing its role as a widely used genome engineering tool, the review explores how CRISPR Cas9 can significantly contribute to the targeted disruption of genes responsible for biofilm formation, highlighting its pivotal role in reshaping strategies to combat antibiotic resistance and mitigate the challenges posed by biofilm-associated infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081.

    Article  PubMed  Google Scholar 

  2. Pineda Solas, V., Perez Benito, A., Domingo Puiggros, M., Larramona Carrera, H., Segura Porta, F. & & Fontanals Aymerich, D. (2002). Bacteremic pneumococcal pneumonia. Anales Espanoles de Pediatria, 57(5), 408–413.

    Article  CAS  PubMed  Google Scholar 

  3. Hawkey, P. M. (2015). Multi-drug resistant Gram-negative bacteria: a product of globalization. Journal of Hospital Infection, 89, 241–247.

    Article  CAS  PubMed  Google Scholar 

  4. Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jasovský, D., Littman, J., Zorzet, A., & Cars, O. (2016). Antimicrobial resistance—a threat to the world’s sustainable development. Upsala Journal of Medical Sciences, 121(3), 159–164.

    Article  PubMed  PubMed Central  Google Scholar 

  6. OECD (2018). Stemming the superbug tide: just a few dollars more. Paris: OECD Publishing. https://doi.org/10.1787/9789264307599-en.

  7. Conlon, B. P., Nakayasu, E. S., Fleck, L. E., LaFleur, M. D., Isabella, V. M., Coleman, K., Leonard, S. N., Smith, R. D., Adkins, J. N., & Lewis, K. (2013). Killing persister cells and eradicating a biofilm infection by activating the ClpP protease. Nature, 21, 365–370. https://doi.org/10.1038/nature12790.

    Article  CAS  Google Scholar 

  8. Olsen, I.(2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 34, 877–886.

    Article  CAS  Google Scholar 

  9. Martinez, J. L., & Rojo, F. (2011). Metabolic regulation of antibiotic resistance. FEMS Microbiology Reviews, 35, 768–789.

    Article  CAS  PubMed  Google Scholar 

  10. Yan, J., & Bassler, B. L. (2019). Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host & Microbe, 26, 15–21.

    Article  CAS  Google Scholar 

  11. Bowler P., Murphy C., Wolcott R. (2020) Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrobial Resistance & Infection Control, 9, 162. https://doi.org/10.1186/s13756-020-00830-6

  12. Costerton, J. W., Montanaro, L., & Arciola, C. R. (2005). Biofilm in implant infections: its production and regulation. The International Journal of Artificial Organs, 28, 1062–1068.

    Article  CAS  PubMed  Google Scholar 

  13. Hoiby, N., Ciofu, O., Johansen, H. K., Song, Z. J., Moser, C., Jensen, P. Ø., Molin, S., Givskov, M., Tolker-Nielsen, T., & Bjarnsholt, T. (2011). The clinical impact of bacterial biofilms. International Journal of Oral Science, 3, 55.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharma, D., Misba, L. & Khan, A.U. (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8, 76. https://doi.org/10.1186/s13756-019-0533-3

  15. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C., & Mattick, J. S. (2002). Extracellular DNA required for bacterial biofilm formation. Science, 295, 1487.

    Article  CAS  PubMed  Google Scholar 

  16. Wingender, J., Strathmann, M., Rode, A., Leis, A., & Flemming, H. C. (2001). Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods in Enzymology, 336, 302–314.

    Article  CAS  PubMed  Google Scholar 

  17. Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harbor Perspectives in Medicine, 3(4), a010306.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Borlee, B. R., Goldman, A. D., Murakami, K., Samudrala, R., Wozniak, D. J., & Parsek, M. R. (2010). Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Molecular Microbiology, 75(4), 827–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahmad, I., Nygren, E., Khalid, F., Myint, S. L., & Uhlin, B. E. (2020). A Cyclic-di-GMP signalling network regulates biofilm formation and surface-associated motility of Acinetobacter baumannii 17978. Scientific Reports, 10(1), 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Van Houdt, R., Givskov, M., & Michiels, C. W. (2007). Quorum sensing in Serratia. FEMS Microbiology Reviews, 31(4), 407–424.

    Article  PubMed  Google Scholar 

  22. Del Pozo, J. L. (2018). Biofilm-related disease. Expert Review of Anti-Infective Therapy, 16(1), 51–65.

    Article  PubMed  Google Scholar 

  23. Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: a review of the challenges and approaches. Drug Delivery, 25(1), 1234–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nidhi, S., Anand, U., Oleksak, P., Tripathi, P., Lal, J. A., Thomas, G., Kuca, K., & Tripathi, V. (2021). Novel CRISPR-Cas Systems: An updated review of the current achievements, applications, and future research perspectives. International Journal of Molecular Sciences, 22(7), 3327 https://doi.org/10.3390/ijms22073327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas from an encounter with a mysterious repeated sequence to genome editing technology. Journal of Bacteriology, 200(7), e00580–17. https://doi.org/10.1128/JB.00580-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han, W., & She, Q. (2017). CRISPR History: Discovery, characterization, and prosperity. Progress in Molecular Biology and Translational Science, 152, 1–21.

    Article  CAS  PubMed  Google Scholar 

  27. Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551–2561.

    Article  CAS  PubMed  Google Scholar 

  28. Jansen, R., Embden, J. D., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43(6), 1565–1575.

    Article  CAS  PubMed  Google Scholar 

  29. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  30. Horvath, P., & Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962), 167–170.

    Article  CAS  PubMed  Google Scholar 

  31. Lander, E. S. (2016). The heroes of CRISPR. Cell, 164(1-2), 18–28.

    Article  CAS  PubMed  Google Scholar 

  32. Marraffini, L. A., & Sontheimer, E. J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 322(5909), 1843–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L., Terns, R. M., & Terns, M. P. (2009). RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 139(5), 945–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67–71.

    Article  CAS  PubMed  Google Scholar 

  35. Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J., Wolf, Y. I., Yakunin, A. F., van der Oost, J., & Koonin, E. V. (2011). Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 9(6), 467–477. https://doi.org/10.1038/nrmicro2577.

    Article  CAS  PubMed  Google Scholar 

  36. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471(7340), 602–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Abbott, A. (2016). The Quiet Revolutionary: How the co-discovery of CRISPR explosively changed Emmanuelle Charpentier’s life. Nature, 532(7600), 432–434.

    Article  PubMed  Google Scholar 

  39. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 39(21), 9275–9282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Golkar, Z. (2020). CRISPR: a journey of gene-editing based medicine. Genes Genomics, 42(12), 1369–1380.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J. J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Scott, D., Shah, S. A., Siksnys, V., Terns, M. P., Venclovas, Č., White, M. F., Yakunin, A. F., Yan, W., Zhang, F., Garrett, R. A., Backofen, R., van der Oost, J., Barrangou, R. & Koonin, E. V. (2020). Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67–83.

    Article  CAS  PubMed  Google Scholar 

  44. Jore, M. M., Lundgren, M., van Duijn, E., Bultema, J. B., Westra, E. R., Waghmare, S. P., Wiedenheft, B., Pul, U., Wurm, R., Wagner, R., Beijer, M. R., Barendregt, A., Zhou, K., Snijders, A. P., Dickman, M. J., Doudna, J. A., Boekema, E. J., Heck, A. J., van der Oost, J., & Brouns, S. J. (2011). Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nature Structural & Molecular Biology, 18(5), 529–536.

    Article  CAS  Google Scholar 

  45. Newsom, S., Parameshwaran, H. P., Martin, L., & Rajan, R. (2020). The CRISPR-Cas mechanism for adaptive immunity and alternate bacterial functions fuels diverse biotechnologies. Frontiers in Cellular and Infection Microbiology, 10, 619763.

    Article  CAS  PubMed  Google Scholar 

  46. Pinilla-Redondo, R., Mayo-Munoz, D., Russel, J., Garrett, R. A., Randau, L., Sorensen, S. J., & Shah, S. A. (2020). Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Research, 48(4), 2000–2012.

    Article  CAS  PubMed  Google Scholar 

  47. Harrington, L. B., Ma, E., Chen, J. S., Witte, I. P., Gertz, D., Paez-Espino, D., Al-Shayeb, B., Kyrpides, N. C., Burstein, D., Banfield, J. F., & Doudna, J. A. (2020). A scoutRNA is required for some type V CRISPR-Cas systems. Molecular Cell, 79(3), 416–24 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Connell, M. R. (2019). Molecular mechanisms of RNA targeting by Cas13-containing Type VI CRISPR-Cas systems. Journal of Molecular Biology, 431(1), 66–87.

    Article  PubMed  Google Scholar 

  49. Shabbir, M. A., Hao, H., Shabbir, M. Z., Hussain, H. I., Iqbal, Z., Ahmed, S., Sattar, A., Iqbal, M., Li, J., & Yuan, Z. (2016). Survival and evolution of CRISPR-Cas System in prokaryotes and its applications. Frontiers in Immunology, 7, 375.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Asmamaw, M., & Zawdie, B. (2021). Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics, 15, 353–361.

    PubMed  PubMed Central  Google Scholar 

  51. Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A., & Marraffini, L. A. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology, 32, 1146–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, J. S., Cho, D. H., Park, M., Chung, W. J., Shin, D., Ko, K. S., & Kweon, D. H. (2016). CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum beta-lactamases. Journal of Microbiology and Biotechnology, 26, 394–401.

    Article  CAS  PubMed  Google Scholar 

  53. Price, V. J., McBride, S. W., Hullahalli, K., Chatterjee, A., Duerkop, B. A., & Palmer, K. L. (2019). Enterococcus faecalis CRISPR-Cas is a robust barrier to conjugative antibiotic resistance dissemination in the murine intestine. mSphere, 4, e00464–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L., & Duerkop, B. A. (2019). Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant Enterococci. Antimicrobial Agents and Chemotherapy, 63, e01454–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wan, F., Draz, M. S., Gu, M., Yu, W., Ruan, Z., & Luo, Q. (2021). Novel strategy to combat antibiotic resistance: A sight into the combination of CRISPR/Cas9 and nanoparticles. Pharmaceutics, 13(3), 352 https://doi.org/10.3390/pharmaceutics13030352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gomaa, A. A., Klumpe, H. E., Luo, M. L., Selle, K., Barrangou, R., & Beisel, C. L. (2014). Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio, 5(1), 10–1128.

    Article  Google Scholar 

  57. Kiga, K., Tan, X. E., Ibarra-Chávez, R., Watanabe, S., Aiba, Y., Sato’o, Y., Li, F. Y., Sasahara, T., Cui, B., Kawauchi, M., Boonsiri, T., Thitiananpakorn, K., Taki, Y., Azam, A. H., Suzuki, M., Penadés, J. R., & Cui, L. (2020). Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nature Communication, 11(1), 2934.

    Article  CAS  Google Scholar 

  58. Kang, Y. K., Kwon, K., Ryu, J. S., Lee, H. N., Park, C., & Chung, H. J. (2017). Nonviral genome editing based on a polymer-derivatized CRISPR nano complex for targeting bacterial pathogens and antibiotic resistance. Bioconjugate Chemistry, 28(4), 957–967.

    Article  CAS  PubMed  Google Scholar 

  59. Yosef, I., Manor, M., Kiro, R., & Qimron, U. (2015). Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proceedings of the National Academy of Sciences of the United States of America, 112(23), 7267–7272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Citorik, R. J., Mimee, M., & Lu, T. K. (2014). Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nature Biotechnology, 32(11), 1141–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tagliaferri, T. L., Guimarães, N. R., Pereira, M. D. P. M., Horz, H. P., & Mendes, T. A. D. O. (2020). Exploring the potential of CRISPR-Cas9 under challenging conditions: facing high-copy plasmids and counteracting beta-lactam resistance in clinical strains of Enterobacteriaceae. Frontiers in Microbiology, 11, 511912.

    Article  Google Scholar 

  62. Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L., & Duerkop, B. A. (2019). Conjugative delivery of CRISPR-Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrobial Agents and Chemotherapy, 63(11), 10–1128.

    Article  Google Scholar 

  63. Hao, M., He, Y., Zhang, H., Liao, X. P., Liu, Y. H., Sun, J., Du, H., Kreiswirth, B. N., & Chen, L. (2020). CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 64(9), 10–1128.

    Article  Google Scholar 

  64. Liu, H., Li, H., Liang, Y., Du, X., Yang, C., Yang, L., Xie, J., Zhao, R., Tong, Y., Qiu, S., & Song, H. (2020). Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria. Theranostics, 10(14), 6310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Singla, S., Harjai, K., Katare, O. P., & Chhibber, S. (2016). Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS ONE, 11(4), e0153777.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cobb, L. H., Park, J., Swanson, E. A., Beard, M. C., McCabe, E. M., Rourke, A. S., Seo, K. S., Olivier, A. K., & Priddy, L. B. (2019). CRISPR-Cas9 modified bacteriophage for treatment of Staphylococcus aureus induced osteomyelitis and soft tissue infection. PLoS ONE, 14(11), e0220421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zuberi, A., Ahmad, N., & Khan, A. U. (2017). CRISPRi induced suppression of fimbriae gene (fimH) of a uropathogenic Escherichia coli: An approach to inhibit microbial biofilms. Frontiers in Immunology, 8, 1552.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kang, S., Kim, J., Hur, J. K., & Lee, S. S. (2017). CRISPR-based genome editing of clinically important Escherichia coli SE15 isolated from indwelling urinary catheters of patients. Journal of Medical Microbiology, 66(1), 18–25. https://doi.org/10.1099/jmm.0.000406.

    Article  PubMed  Google Scholar 

  69. Gholizadeh, P., Kose, S., Dao, S., Ganbarov, K., Tanomand, A., Dal, T., Aghazadeh, M., Ghotaslou, R., Ahangarzadeh Rezaee, M., Yousefi, B., & Samadi Kafil, H. (2020). How CRISPR-Cas system could be used to combat antimicrobial resistance. Infection and Drug Resistance, 13, 1111–1121.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hegde, S., Nilyanimit, P., Kozlova, E., Anderson, E. R., Narra, H. P., Sahni, S. K., Heinz, E., & Hughes, G. L. (2019). CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes. PLOS Neglected Tropical Diseases, 13(12), e0007883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gholizadeh, P., Aghazadeh, M., Asgharzadeh, M., & Kafil, H. S. (2017). Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. European Journal of Clinical Microbiology and Infectious Diseases, 36, 2043–2051. https://doi.org/10.1007/s10096-017-3036-2.

    Article  CAS  PubMed  Google Scholar 

  72. Yao, R., Liu, D., Jia, X., Zheng, Y., Liu, W., & Xiao, Y. (2018). CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synthetic and Systems Biotechnology, 3, 135–149.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31, 233–239. https://doi.org/10.1038/nbt.2508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goren, M., Yosef, I., & Qimron, U. (2017). Sensitizing pathogens to antibiotics using the CRISPR-Cas system. Drug Resistance Updates, 30, 1–6. https://doi.org/10.1016/j.drup.2016.11.001.

    Article  PubMed  Google Scholar 

  75. Touchon, M., Charpentier, S., Pognard, D., Picard, B., Arlet, G., Rocha, E. P., Denamur, E., & Branger, C. (2012). Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements. Microbiology, 158, 2997–3004. https://doi.org/10.1099/mic.0.060814-0.

    Article  CAS  PubMed  Google Scholar 

  76. Hale, C. R., Majumdar, S., Elmore, J., Pfister, N., Compton, M., Olson, S., Resch, A. M., Glover, 3rd, C. V., Graveley, B. R., Terns, R. M., & Terns, M. P. (2012). Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Molecular Cell, 45, 292–302. https://doi.org/10.1016/j.molcel.2011.10.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zuberi, A., Misba, L. & & Khan, A. U. (2017). CRISPR interference (CRISPRi) inhibition of luxS gene expression in E. coli: An approach to inhibit biofilm. Frontiers in Cellular and Infection Microbiology, 7, 214 https://doi.org/10.3389/fcimb.2017.00214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gong, T., Tang, B., Zhou, X., Zeng, J., Lu, M., Guo, X., Peng, X., Lei, L., Gong, B., & Li, Y. (2018). Genome editing in Streptococcus mutans through self-targeting CRISPR arrays. Molecular Oral Microbiology, 33, 440–449. https://doi.org/10.1111/omi.12247.

    Article  CAS  PubMed  Google Scholar 

  79. Garrido, V., Pinero-Lambea, C., Rodriguez-Arce, I., Paetzold, B., Ferrar, T., Weber, M., Garcia-Ramallo, E., Gallo, C., Collantes, M., Penuelas, I., Serrano, L., Grilló, M. J., & Lluch-Senar, M. (2021). Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo. Molecular Systems Biology, 17, e10145 https://doi.org/10.15252/msb.202010145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sharma, S., Mohler, J., Mahajan, S. D., Schwartz, S. A., Bruggemann, L., & Aalinkeel, R. (2023). Microbial Biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms, 19, 1614 https://doi.org/10.3390/microorganisms11061614.

    Article  CAS  Google Scholar 

  81. Gupta, S., Kumar, P., Rathi, B., Verma, V., Dhanda, R. S., Devi, P., & Yadav, M. (2021). Targeting of uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC. Scientific Reports, 11(1), 17801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank UM DAE Center for Excellence in Basic Sciences, Mumbai, India, for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

P.P.—Literature survey, summarized and wrote the draft of the review. V.L.S.—Conceptualization, design, discussion, literature survey, editing, and finalizing the manuscript.

Corresponding author

Correspondence to Sirisha L. Vavilala.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P., Vavilala, S.L. From Gene Editing to Biofilm Busting: CRISPR-CAS9 Against Antibiotic Resistance—A Review. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01276-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01276-y

Keywords

Navigation