Skip to main content

Advertisement

Log in

Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type I diabetes in NOD mice

  • Research Article
  • Published:
Gene Therapy Submit manuscript

Abstract

Type I diabetes results from an autoimmune destruction of the insulin-producing pancreatic β cells. Although the exact immunologic processes underlying this disease are unclear, increasing evidence suggests that immunosuppressive, immunoregulatory and anti-inflammatory agents can interrupt the progression of the disease. Alpha 1 antitrypsin (AAT) is a multifunctional serine proteinase inhibitor (serpin) that also displays a wide range of anti-inflammatory properties. To test the ability of AAT to modulate the development of type I diabetes, we performed a series of investigations involving recombinant adeno-associated virus vector (rAAV)-mediated gene delivery of human alpha-1 antitrypsin (hAAT) to nonobese diabetic (NOD) mice. Recombinant AAV-expressing hAAT (rAAV2-CB-AT) was administered intramuscularly to 4-week-old female NOD mice (1 × 1010 i.u./mouse). A single injection of this vector reduced the intensity of insulitis, the levels of insulin autoantibodies, and the frequency of overt type I diabetes (30% (3/10) at 32 weeks of age versus 70% (7/10) in controls). Transgene expression at the injection sites was confirmed by immunostaining. Interestingly, antibodies against hAAT were present in a majority of the vector-injected mice and circulating hAAT was undetectable when assessed 10 weeks postinjection. This study suggests a potential therapeutic role for AAT in preventing type I diabetes as well as the ability of AAV gene therapy-based approaches to ameliorate disease effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Atkinson MA, Leiter EH . The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999; 5: 601–604.

    CAS  Google Scholar 

  2. Bendelac A, Carnaud C, Boitard C, Bach JF . Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J Exp Med 1987; 166: 823–832.

    Article  CAS  Google Scholar 

  3. Miller BJ, Appel MC, O'Neil JJ, Wicker LS . Both the Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. J Immunol 1988; 140: 52–58.

    CAS  PubMed  Google Scholar 

  4. Wang Y, Hao L, Gill RG, Lafferty KJ . Autoimmune diabetes in NOD mouse is L3T4 T-lymphocyte dependent. Diabetes 1987; 36: 535–538.

    Article  CAS  Google Scholar 

  5. Like AA et al. Prevention of diabetes in BioBreeding/Worcester rats with monoclonal antibodies that recognize T lymphocytes or natural killer cells. J Exp Med 1986; 164: 1145–1159.

    Article  CAS  Google Scholar 

  6. Sibley RK, Sutherland DE . Pancreas transplantation. An immunohistologic and histopathologic examination of 100 grafts. Am J Pathol 1987; 128: 151–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Haskins K et al. T-lymphocyte clone specific for pancreatic islet antigen. Diabetes 1988; 37: 1444–1448.

    Article  CAS  Google Scholar 

  8. Macen JL, Upton C, Nation N, McFadden G . SERP1, a serine proteinase inhibitor encoded by myxoma virus, is a secreted glycoprotein that interferes with inflammation. Virology 1993; 195: 348–363.

    Article  CAS  Google Scholar 

  9. Miyamoto Y et al. Novel functions of human alpha(1)-protease inhibitor after S-nitrosylation: inhibition of cysteine protease and antibacterial activity. Biochem Biophys Res Commun 2000; 267: 918–923.

    Article  CAS  Google Scholar 

  10. Ray MB, Desmet VJ, Gepts W . Alpha-1-Antitrypsin immunoreactivity in islet cells of adult human pancreas. Cell Tissue Res 1977; 185: 63–68.

    Article  CAS  Google Scholar 

  11. Perlmutter DH et al. Expression of the alpha 1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci USA 1985; 82: 795–799.

    Article  CAS  Google Scholar 

  12. Olsen GN et al. Alpha-1-antitrypsin content in the serum, alveolar macrophages, and alveolar lavage fluid of smoking and nonsmoking normal subjects. J Clin Invest 1975; 55: 427–430.

    Article  CAS  Google Scholar 

  13. Geboes K et al. Morphological identification of alpha-I-anti-trypsin in the human small intestine. Histopathology 1982; 6: 55–60.

    Article  CAS  Google Scholar 

  14. Keppler D et al. Human colon carcinoma cells synthesize and secrete alpha 1-proteinase inhibitor. Biol Chem Hoppe Seyler 1996; 377: 301–311.

    Article  CAS  Google Scholar 

  15. Boskovic G, Twining SS . Local control of alpha1-proteinase inhibitor levels: regulation of alpha1-proteinase inhibitor in the human cornea by growth factors and cytokines. Biochim Biophys Acta 1998; 1403: 37–46.

    Article  CAS  Google Scholar 

  16. Perlmutter DH, Punsal PI . Distinct and additive effects of elastase and endotoxin on expression of alpha 1 proteinase inhibitor in mononuclear phagocytes. J Biol Chem 1988; 263: 16499–16503.

    CAS  PubMed  Google Scholar 

  17. Perlmutter DH, May LT, Sehgal PB . Interferon beta 2/interleukin 6 modulates synthesis of alpha 1-antitrypsin in human mononuclear phagocytes and in human hepatoma cells. J Clin Invest 1989; 84: 138–144.

    Article  CAS  Google Scholar 

  18. Knoell DL, Ralston DR, Coulter KR, Wewers MD . Alpha 1-antitrypsin and protease complexation is induced by lipopolysaccharide, interleukin-1beta, and tumor necrosis factor-alpha in monocytes. Am J Respir Crit Care Med 1998; 157: 246–255.

    Article  CAS  Google Scholar 

  19. Fischer DC et al. Induction of alpha1-antitrypsin synthesis in human articular chondrocytes by interleukin-6-type cytokines: evidence for a local acute-phase response in the joint. Arthritis Rheum 1999; 42: 1936–1945.

    Article  CAS  Google Scholar 

  20. Dhami R et al. Acute cigarette smoke-induced connective tissue breakdown is mediated by neutrophils and prevented by alpha1-antitrypsin. Am J Respir Cell Mol Biol 2000; 22: 244–252.

    Article  CAS  Google Scholar 

  21. Churg A et al. Alpha-1-antitrypsin and a broad spectrum metalloprotease inhibitor, RS113456, have similar acute anti-inflammatory effects. Lab Invest 2001; 81: 1119–1131.

    Article  CAS  Google Scholar 

  22. Waugh JM et al. Therapeutic elastase inhibition by alpha-1-antitrypsin gene transfer limits neointima formation in normal rabbits. J Vasc Interv Radiol 2001; 12: 1203–1209.

    Article  CAS  Google Scholar 

  23. Song S et al. Stable therapeutic serum levels of human alpha-1 antitrypsin (AAT) after portal vein injection of recombinant adeno-associated virus (rAAV) vectors. Gene Therapy 2001; 8: 1299–1306.

    Article  CAS  Google Scholar 

  24. Song S et al. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci USA 1998; 95: 14384–14388.

    Article  CAS  Google Scholar 

  25. Goudy K et al. Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice. Proc Natl Acad Sci USA 2001; 98: 13913–13918.

    Article  CAS  Google Scholar 

  26. Sharp HL . The current status of alpha-1-antityrpsin, a protease inhibitor, in gastrointestinal disease. Gastroenterology 1976; 70: 611–621.

    CAS  PubMed  Google Scholar 

  27. Carrell RW et al. Structure and variation of human alpha 1-antitrypsin. Nature 1982; 298: 329–334.

    Article  CAS  Google Scholar 

  28. Perlmutter DH et al. Identification of a serpin-enzyme complex receptor on human hepatoma cells and human monocytes. Proc Natl Acad Sci USA 1990; 87: 3753–3757.

    Article  CAS  Google Scholar 

  29. Zaidi SH et al. Targeted overexpression of elafin protects mice against cardiac dysfunction and mortality following viral myocarditis. J Clin Invest 1999; 103: 1211–1219.

    Article  CAS  Google Scholar 

  30. Niemann MA, Baggott JE, Miller EJ . Binding of SPAAT, the 44-residue C-terminal peptide of alpha 1-antitrypsin, to proteins of the extracellular matrix. J Cell Biochem 1997; 66: 346–357.

    Article  CAS  Google Scholar 

  31. Ziady AG et al. Chain length of the polylysine in receptor-targeted gene transfer complexes affects duration of reporter gene expression both in vitro and in vivo. J Biol Chem 1999; 274: 4908–4916.

    Article  CAS  Google Scholar 

  32. Goudy KS et al. Elucidation of time and dose dependencies using AAV-IL-10 gene therapy for prevention of type 1 diabetes in the NOD mouse. Mol Ther 2002; 5: S17 (abstr. 46).

    Google Scholar 

  33. Zhang YC et al. Genetic predisposition to autoimmunity specifically imparts responsiveness to transgenes delivered by recombinant adeno-associated virus. Mol Ther 2002; 5: S430 (abstr. 1317).

    Google Scholar 

  34. Zhang YC et al. Adeno-associated virus transduction of islets with interleukin-4 results in impaired metabolic function in syngeneic marginal islet mass transplantation. Transplantation 2002; 74(8): 1184–1186.

    Article  CAS  Google Scholar 

  35. Song S, Laipis PJ, Berns KI, Flotte TR . Effect of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle. Proc Natl Acad Sci USA 2001; 98: 4084–4088.

    Article  CAS  Google Scholar 

  36. Barbour KW et al. The murine alpha(1)-proteinase inhibitor gene family: polymorphism, chromosomal location, and structure. Genomics 2002; 80: 515–522.

    Article  CAS  Google Scholar 

  37. Joslin G et al. The SEC receptor recognizes a pentapeptide neodomain of alpha 1-antitrypsin-protease complexes. J Biol Chem 1991; 266: 11282–11288.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants from the NIH (DK58327, HL59412, RR00082, DK62652), the Juvenile Diabetes Research Foundation, the Alpha 1 Foundation and the Children's Miracle Network.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S., Goudy, K., Campbell-Thompson, M. et al. Recombinant adeno-associated virus-mediated alpha-1 antitrypsin gene therapy prevents type I diabetes in NOD mice. Gene Ther 11, 181–186 (2004). https://doi.org/10.1038/sj.gt.3302156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302156

  • Springer Nature Limited

Keywords

This article is cited by

Navigation