Skip to main content
Log in

A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing

  • Article
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Recent studies have implicated the nucleosome acidic patch in the activity of ATP-dependent chromatin remodeling machines. We used a photocrosslinking-based nucleosome profiling technology (photoscanning) to identify a conserved basic motif within the catalytic subunit of ISWI remodelers, SNF2h, which engages this nucleosomal epitope. This region of SNF2h is essential for chromatin remodeling activity in a reconstituted biochemical system and in cells. Our studies suggest that the basic motif in SNF2h plays a critical role in anchoring the remodeler to the nucleosomal surface. We also examine the functional consequences of several cancer-associated histone mutations that map to the nucleosome acidic patch. Kinetic studies using physiologically relevant heterotypic nucleosomal substrates (‘Janus’ nucleosomes) indicate that these cancer-associated mutations can disrupt regularly spaced chromatin structure by inducing ISWI-mediated unidirectional nucleosome sliding. These results indicate a potential mechanistic link between oncogenic histones and alterations to the chromatin landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Site-directed photocrosslinking strategy used to explore SNF2h engagement with the nucleosome acidic patch.
Fig. 2: Photoscanning of SNF2h reveals a conserved basic motif that interacts with the nucleosome acidic patch.
Fig. 3: The APB motif is required for SNF2h-mediated nucleosome remodeling.
Fig. 4: The APB motif is essential for ACF remodeling activity, and yeast viability.
Fig. 5: Nucleosome desymmetrization leads to altered ISWI activity.

Similar content being viewed by others

Data availability

The authors declare that data supporting the finding of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding author upon reasonable request.

References

  1. Jiang, C. & Pugh, B. F. Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10, 161–172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Becker, P. B. & Workman, J. L. Nucleosome remodeling and epigenetics. Cold Spring Harb. Perspect. Biol. 5, a017905–a017905 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bartholomew, B. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 83, 671–696 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsukiyama, T., Becker, P. B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Pazin, M. J., Kamakaka, R. T. & Kadonaga, J. T. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266, 2007–2011 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Deuring, R. et al. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5, 355–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Poot, R. A. et al. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 19, 3377–3387 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stopka, T. & Skoultchi, A. I. The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl Acad. Sci. USA 100, 14097–14102 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He, X., Fan, H.-Y., Narlikar, G. J. & Kingston, R. E. Human ACF1 alters the remodeling strategy of SNF2h. J. Biol. Chem. 281, 28636–28647 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Clapier, C. R., Längst, G., Corona, D. F., Becker, P. B. & Nightingale, K. P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clapier, C. R. & Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature 492, 280–284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hamiche, A., Kang, J. G., Dennis, C., Xiao, H. & Wu, C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc. Natl Acad. Sci. USA 98, 14316–14321 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dang, W., Kagalwala, M. N. & Bartholomew, B. Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA. Mol. Cell. Biol. 26, 7388–7396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, J. G., Madrid, T. S., Sevastopoulos, E. & Narlikar, G. J. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13, 1078–1083 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Deindl, S. et al. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152, 442–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blosser, T. R., Yang, J. G., Stone, M. D., Narlikar, G. J. & Zhuang, X. Dynamics of nucleosome remodelling by individual ACF complexes. Nature 462, 1022–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Racki, L. R. et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462, 1016–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldman, J. A., Garlick, J. D. & Kingston, R. E. Chromatin remodeling by imitation switch (ISWI) Class ATP-dependent remodelers is stimulated by histone variant H2A.Z. J. Biol. Chem. 285, 4645–4651 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Dann, G. P. et al. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature 548, 607–611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gamarra, N., Johnson, S. L., Trnka, M. J., Burlingame, A. L. & Narlikar, G. J. The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h. eLife 7, 34270 (2018).

    Article  Google Scholar 

  23. Kalashnikova, A. A., Porter-Goff, M. E., Muthurajan, U. M., Luger, K. & Hansen, J. C. The role of the nucleosome acidic patch in modulating higher order chromatin structure. J. R. Soc. Interface 10, 20121022 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. McGinty, R. K. & Tan, S. Nucleosome structure and function. Chem. Rev. 115, 2255–2273 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Barbera, A. J. et al. The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science 311, 856–861 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Makde, R. D., England, J. R., Yennawar, H. P. & Tan, S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Armache, K.-J., Garlick, J. D., Canzio, D., Narlikar, G. J. & Kingston, R. E. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Science 334, 977–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kato, H. et al. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340, 1110–1113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591–596 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morgan, M. T. et al. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351, 725–728 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Götze, M. et al. StavroX—A software for analyzing crosslinked products in protein interaction studies. J. Am. Soc. Mass Spectrom. 23, 76–87 (2011).

    Article  PubMed  CAS  Google Scholar 

  32. Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9, 904–906 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Ludwigsen, J., Klinker, H. & Planitz, F. M. No need for a power stroke in ISWI‐mediated nucleosome sliding. EMBO Rep. 14, 1092–1097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grüne, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449–460 (2003).

    Article  PubMed  Google Scholar 

  35. Hwang, W. L., Deindl, S., Harada, B. T. & Zhuang, X. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA. Nature 512, 213–217 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686–697 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, S. et al. Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc. Natl Acad. Sci. USA 113, 12238–12243 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arimura, Y. et al. Cancer-associated mutations of histones H2B, H3.1 and H2A.Z.1 affect the structure and stability of the nucleosome. Nucleic Acids Res. 46, 10007–10018 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nacev, B. A. et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature 567, 473–478 (2019).

  40. Alabert, C., Jasencakova, Z. & Groth, A. in DNA Replication. Advances in Experimental Medicine and Biology Vol. 1042 (eds Masai, H. & Foiani, M.) 311-333 (Springer, 2017).

  41. Levendosky, R. F., Sabantsev, A., Deindl, S. & Bowman, G. D. The Chd1 chromatin remodeler shifts hexasomes unidirectionally. eLife 5, 3302 (2016).

    Article  Google Scholar 

  42. Hota, S. K. et al. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nat. Struct. Mol. Biol. 20, 222–229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sabantsev, A., Levendosky, R. F., Zhuang, X., Bowman, G. D. & Deindl, S. Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling. Nat. Commun. 10, 1720 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yan, L., Wu, H., Li, X., Gao, N. & Chen, Z. Structures of the ISWI-nucleosome complex reveal a conserved mechanism of chromatin remodeling. Nat. Struct. Mol. Biol. 26, 258–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu, C. et al. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352, 844–849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levendosky, R. F. & Bowman, G. D. Asymmetry between the two acidic patches dictates the direction of nucleosome sliding by the ISWI chromatin remodeler. eLife 8, e45472 (2019).

  48. Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rhee, H. S., Bataille, A. R., Zhang, L. & Pugh, B. F. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 159, 1377–1388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nekrasov, M. et al. Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics. Nat. Struct. Mol. Biol. 19, 1076–1083 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ikeda, Y. & Behrman, E. J. Improved synthesis of photo-leucine. Syn. Commun. 38, 2276–2284 (2008).

    Article  CAS  Google Scholar 

  53. Debelouchina, G. T., Gerecht, K. & Muir, T. W. Ubiquitin utilizes an acidic surface patch to alter chromatin structure. Nat. Chem. Biol. 13, 105–110 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Luger, K., Rechsteiner, T. J., Flaus, A. J., Waye, M. M. & Richmond, T. J. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272, 301–311 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Leonard, J. D. & Narlikar, G. J. A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler. Mol. Cell 57, 850–859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, C. Y. & Narlikar, G. J. Analysis of nucleosome sliding by ATP-dependent chromatin remodeling enzymes. Meth. Enzymol. 573, 119–135 (2016).

    Article  CAS  Google Scholar 

  57. Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. E. Thompson, K. Diehl, J. D. Bagert, K. Jani and other members of the Muir laboratory for valuable discussions. We thank S. Tharan from the Proteomics and Mass Spectrometry core. Yeast strains (YTT 227, YTT 420-424) were a gift from T. Tsukiyama. H.T.D. was funded by a postdoctoral fellowship from the Jane Coffin Childs Memorial fund. This work was supported by the US National Institutes of Health (NIH grant nos. R37-GM086868 and P01-CA196539).

Author information

Authors and Affiliations

Authors

Contributions

H.T.D. synthesized the probe and all photoactivable nucleosomes, heterotypic nucleosomes, dinucleosomes, expressed and purified all remodelers, and performed all biochemical experiments. H.T.D. and B.E.D. performed yeast experiments. G.P.D. expressed and purified the Sir3-BAH domain, and assisted with the expression and purification of the ACF complex. G.P.L. expressed and purified RCC1 and mRCC1. H.T.D. and T.W.M. analyzed all data and wrote the manuscript.

Corresponding author

Correspondence to Tom W. Muir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 3 and 4, Figs. 1–39 and Notes 1 and 2

Reporting Summary

Supplementary Tables 1 and 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, H.T., Dul, B.E., Dann, G.P. et al. A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Nat Chem Biol 16, 134–142 (2020). https://doi.org/10.1038/s41589-019-0413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0413-4

  • Springer Nature America, Inc.

This article is cited by

Navigation