Skip to main content
Log in

Engineering the amoeba Dictyostelium discoideum for biosynthesis of a cannabinoid precursor and other polyketides

  • Article
  • Published:

From Nature Biotechnology

View current issue Submit your manuscript

An Author Correction to this article was published on 23 November 2022

This article has been updated

Abstract

Aromatic polyketides are natural polyphenolic compounds with a broad spectrum of pharmacological activities. Production of those metabolites in the model organisms Escherichia coli and Saccharomyces cerevisiae has been limited by the extensive cellular engineering needed for the coordinated biosynthesis of polyketides and their precursors. In contrast, the amoeba Dictyostelium discoideum is a native producer of secondary metabolites and harbors a wide, but largely unexplored, repertoire of genes for the biosynthesis of polyketides and terpenoids. Here we present D. discoideum as an advantageous chassis for the production of aromatic polyketides. By expressing its native and cognate plant polyketide synthase genes in D. discoideum, we demonstrate production of phlorocaprophenone, methyl-olivetol, resveratrol and olivetolic acid (OA), which is the central intermediate in the biosynthesis of cannabinoids. To facilitate OA synthesis, we further engineered an amoeba/plant inter-kingdom hybrid enzyme that produced OA from primary metabolites in two enzymatic steps, providing a shortcut in a synthetic cannabinoid pathway using the D. discoideum host system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: PCP production by overexpression of stlB in D. discoideum.
Fig. 2: Biosynthesis of methyl-olivetol and olivetol by StlA in D. discoideum.
Fig. 3: Resveratrol production by expressing a plant type III PKS gene in D. discoideum.
Fig. 4: Heterologous production of olivetolic acid in D. discoideum.
Fig. 5: OA biosynthesis by a functional inter-kingdom PKS hybrid.

Similar content being viewed by others

Data availability

Nucleotide sequence data were obtained from the GenBank (https://www.ncbi.nlm.nih.gov/genbank/). The Codon Usage for organisms was obtained from the Kazusa Codon Usage Database (https://www.kazusa.or.jp/codon/). The minimal datasets generated during the study are available as Supplementary Information or as source data. Biological and genetic materials are available from V.V. and F.H. upon reasonable request and completion of a material transfer agreement. Source data are provided with this paper.

Change history

References

  1. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Austin, M. B. & Noel, J. P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20, 79–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Lim, Y. P., Go, M. K. & Yew, W. S. Exploiting the biosynthetic potential of type III polyketide synthases. Molecules 21, 806 (2016).

  4. Morita, H., Wong, C. P. & Abe, I. How structural subtleties lead to molecular diversity for the type III polyketide synthases. J. Biol. Chem. 294, 15121–15136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sunil, C. & Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry 166, 112066 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. de la Lastra, C. A. & Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 35, 1156–1160 (2007).

    Article  PubMed  Google Scholar 

  7. Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Fellermeier, M. & Zenk, M. H. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett. 427, 283–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Whiting, P. F. et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA 313, 2456–2473 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palmer, C. M. & Alper, H. S. Expanding the chemical palette of industrial microbes: metabolic engineering for type III PKS-derived polyketides. Biotechnol. J. 14, 1700463 (2019).

    Article  Google Scholar 

  12. Luo, X. et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, X. et al. Terpene synthase genes in eukaryotes beyond plants and fungi: occurrence in social amoebae. Proc. Natl Acad. Sci. USA 113, 12132–12137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barnett, R. & Stallforth, P. Natural products from social amoebae. Chemistry 24, 4202–4214 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zucko, J. et al. Polyketide synthase genes and the natural products potential of Dictyostelium discoideum. Bioinformatics 23, 2543–2549 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh, R. et al. Dissecting the functional role of polyketide synthases in Dictyostelium discoideum: biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol. J. Biol. Chem. 283, 11348–11354 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Heidel, A. J. et al. Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res. 21, 1882–1891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Austin, M. B. et al. Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase. Nat. Chem. Biol. 2, 494–502 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herbst, D. A., Townsend, C. A. & Maier, T. The architectures of iterative type I PKS and FAS. Nat. Prod. Rep. 35, 1046–1069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimizu, Y., Ogata, H. & Goto, S. Type III polyketide synthases: functional classification and phylogenomics. ChemBioChem 18, 50–65 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Fey, P., Kowal, A. S., Gaudet, P., Pilcher, K. E. & Chisholm, R. L. Protocols for growth and development of Dictyostelium discoideum. Nat. Protoc. 2, 1307–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Morris, H. R., Taylor, G. W., Masento, M. S., Jermyn, K. A. & Kay, R. R. Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature 328, 811–814 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Kay, R. R. & Jermyn, K. A. A possible morphogen controlling differentiation in Dictyostelium. Nature 303, 242–244 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Carvalho, A., Hansen, E. H., Kayser, O., Carlsen, S. & Stehle, F. Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res. 17, fox037 (2017).

  26. Taura, F. et al. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett. 583, 2061–2066 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Gagne, S. J. et al. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc. Natl Acad. Sci. USA 109, 12811–12816 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morgan-Kiss, R. M. & Cronan, J. E. The Escherichia coli fadK (ydiD) gene encodes an anerobically regulated short chain acyl-CoA synthetase. J. Biol. Chem. 279, 37324–37333 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Kay, R. R. The biosynthesis of differentiation-inducing factor, a chlorinated signal molecule regulating Dictyostelium development. J. Biol. Chem. 273, 2669–2675 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Narita, T. B., Koide, K., Morita, N. & Saito, T. Dictyostelium hybrid polyketide synthase, SteelyA, produces 4-methyl-5-pentylbenzene-1,3-diol and induces spore maturation. FEMS Microbiol. Lett. 319, 82–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Saito, T. et al. Identification of new differentiation inducing factors from Dictyostelium discoideum. Biochim. Biophys. Acta 1760, 754–761 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Mookerjee, S., Campbell, A. J., Wiltshire, Z. D. & Chen, K. J. Method and cell line for production of phytocannabinoids and phytocannabinoid analogues in yeast. US patent no. 20200283807A1 (2018).

  33. Mookerjee, S., Campbell, A. J., Wiltshire, Z. D. & Chen, K. J. Method and cell line for production of polyketides in yeast. US patent no. 10975395B2 (2020).

  34. Salehi, B. et al. Resveratrol: a double-edged sword in health benefits. Biomedicines 6, 91 (2018).

  35. Hoefgen, S. et al. Facile assembly and fluorescence-based screening method for heterologous expression of biosynthetic pathways in fungi. Metab. Eng. 48, 44–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Veltman, D. M., Keizer-Gunnink, I. & Haastert, P. J. An extrachromosomal, inducible expression system for Dictyostelium discoideum. Plasmid 61, 119–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Milke, L., Aschenbrenner, J., Marienhagen, J. & Kallscheuer, N. Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl. Microbiol. Biotechnol. 102, 1575–1585 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, S. et al. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab. Eng. 29, 153–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Unkles, S. E., Valiante, V., Mattern, D. J. & Brakhage, A. A. Synthetic biology tools for bioprospecting of natural products in eukaryotes. Chem. Biol. 21, 502–508 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Katz, K. S. & Ratner, D. I. Homologous recombination and the repair of double-strand breaks during cotransformation of Dictyostelium discoideum. Mol. Cell. Biol. 8, 2779–2786 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiegand, S., Kruse, J., Gronemann, S. & Hammann, C. Efficient generation of gene knockout plasmids for Dictyostelium discoideum using one-step cloning. Genomics 97, 321–325 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kuspa, A. & Loomis, W. F. Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc. Natl Acad. Sci. USA 89, 8803–8807 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sekine, R., Kawata, T. & Muramoto, T. CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium. Sci. Rep. 8, 8471 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tan, Z., Clomburg, J. M. & Gonzalez, R. Synthetic pathway for the production of olivetolic acid in Escherichia coli. ACS Synth. Biol. 7, 1886–1896 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Lu, Y. et al. Production of the soluble human Fas ligand by Dictyostelium discoideum cultivated on a synthetic medium. J. Biotechnol. 108, 243–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Vaknin, Y. et al. Identification and characterization of a novel Aspergillus fumigatus rhomboid family putative protease, RbdA, involved in hypoxia sensing and virulence. Infect. Immun. 84, 1866–1878 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Levi, S., Polyakov, M. & Egelhoff, T. T. Green fluorescent protein and epitope tag fusion vectors for Dictyostelium discoideum. Plasmid 44, 231–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Fey, P., Dodson, R. J., Basu, S. & Chisholm, R. L. In: Dictyostelium discoideum Protocols (eds Eichinger, L. & Rivero, F.) 59–92 (Humana Press, 2013).

  49. Hirst, J., Kay, R. R. & Traynor, D. Dictyostelium cultivation, transfection, microscopy and fractionation. Bio. Protoc. 5, 1485 (2015).

  50. Meier, K. et al. Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media. Biochem. Eng. J. 109, 228–235 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Heinecke for conducting NMR experiments and L. Reimer for technical support. This work was supported by two grants of the European Social Fund ESF ‘Europe for Thuringia’ projects MiQWi (2015FGR0097, to F.H.) and SphinX (2017FGR0073, to V.V.), the Leibniz Research Cluster in the frame of the BMBF Strategic Process Biotechnology 2020+ (031A360A, to V.V.), the BMBF funding program ‘GO-Bio initial’ (FKZ161B097, to F.H.) and the BMBF-funded InfectControl consortium (03ZZ0813A, to L.R.).

Author information

Authors and Affiliations

Authors

Contributions

C.R., J.E.K., V.V. and F.H. designed the research. C.R. and J.E.K. performed experiments and analyzed the data. L.R. supervised the respiration activity measurements. J.R. analyzed the NMR data. C.R., J.E.K., V.V. and F.H. wrote the manuscript.

Corresponding authors

Correspondence to Vito Valiante or Falk Hillmann.

Ethics declarations

Competing interests

C.R., J.E.K., V.V. and F.H. declare the following competing financial interest: part of this work was used to file patent application PCT/EP2021/068240.

Additional information

Peer review information Nature Biotechnology would like to thank Rasmus Frandsen, Rob Kay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Supplementary Tables 1–4.

Reporting Summary

Source data

Source Data Fig. 1

Unprocessed Western blots.

Source Data Fig. 2

Unprocessed Northern blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimer, C., Kufs, J.E., Rautschek, J. et al. Engineering the amoeba Dictyostelium discoideum for biosynthesis of a cannabinoid precursor and other polyketides. Nat Biotechnol 40, 751–758 (2022). https://doi.org/10.1038/s41587-021-01143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-021-01143-8

  • Springer Nature America, Inc.

This article is cited by

Navigation