Skip to main content

Advertisement

Log in

Identifying general reaction conditions by bandit optimization

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Reaction conditions that are generally applicable to a wide variety of substrates are highly desired, especially in the pharmaceutical and chemical industries1,2,3,4,5,6. Although many approaches are available to evaluate the general applicability of developed conditions, a universal approach to efficiently discover these conditions during optimizations is rare. Here we report the design, implementation and application of reinforcement learning bandit optimization models7,8,9,10 to identify generally applicable conditions by efficient condition sampling and evaluation of experimental feedback. Performance benchmarking on existing datasets statistically showed high accuracies for identifying general conditions, with up to 31% improvement over baselines that mimic state-of-the-art optimization approaches. A palladium-catalysed imidazole C–H arylation reaction, an aniline amide coupling reaction and a phenol alkylation reaction were investigated experimentally to evaluate use cases and functionalities of the bandit optimization model in practice. In all three cases, the reaction conditions that were most generally applicable yet not well studied for the respective reaction were identified after surveying less than 15% of the expert-designed reaction space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Optimization of the most general conditions with bandit algorithms.
Fig. 2: Testing the bandit optimization framework on three datasets with different objectives and condition complexities.
Fig. 3: Optimization studies of a palladium-catalysed C–H arylation reaction.
Fig. 4: Optimization studies of an amide coupling reaction with anilines.
Fig. 5: Optimization studies of phenol alkylation with mesylates.

Similar content being viewed by others

Data availability

All reaction datasets evaluated in simulation studies and the two newly collected reaction datasets (the palladium-catalysed C–H arylation reaction and the amide coupling reaction) are available at GitHub (https://github.com/doyle-lab-ucla/bandit-optimization). Raw data logs from simulation studies with both synthetic data and chemistry reaction data are available at Zenodo (https://doi.org/10.5281/zenodo.8170874).

Code availability

All source codes for implemented optimization algorithms and models, simulation methods for synthetic data and chemistry reaction dataset and analysis functions for data logs and optimization results are available at GitHub (https://github.com/doyle-lab-ucla/bandit-optimization). The current release of the software is also available at Zenodo (https://doi.org/10.5281/zenodo.8181283).

References

  1. Wagen, C. C., McMinn, S. E., Kwan, E. E. & Jacobsen, E. N. Screening for generality in asymmetric catalysis. Nature 610, 680–686 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rein, J. et al. Generality-oriented optimization of enantioselective aminoxyl radical catalysis. Science 380, 706–712 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Betinol, I. O., Lai, J., Thakur, S. & Reid, J. P. A data-driven workflow for assigning and predicting generality in asymmetric catalysis. J. Am. Chem. Soc. 145, 12870–12883 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, H. et al. A multi-substrate screening approach for the identification of a broadly applicable Diels–Alder catalyst. Nat. Commun. 10, 770 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Angello, N. H. et al. Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science 378, 399–405 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  6. Rinehart, N. I. et al. A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C–N couplings. Science 381, 965–972 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Lattimore, T. & Szepesvári, C. Bandit Algorithms (Cambridge Univ. Press, 2020).

  8. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction 2nd edn (Bradford Books, 2018).

  9. Slivkins, A. Introduction to multi-armed bandits. Preprint at arxiv.org/abs/1904.07272v7 (2019).

  10. White, J. M. Bandit Algorithms for Website Optimization: Developing, Deploying, and Debugging (O’Reilly Media, 2013).

  11. Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kolb, H. C., VanNieuwenhze, M. S. & Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).

    Article  CAS  Google Scholar 

  14. Chatterjee, S., Guidi, M., Seeberger, P. H. & Gilmore, K. Automated radial synthesis of organic molecules. Nature 579, 379–384 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Echtermeyer, A., Amar, Y., Zakrzewski, J. & Lapkin, A. Self-optimisation and model-based design of experiments for developing a C–H activation flow process. Beilstein J. Org. Chem. 13, 150–163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coley, C. W., Abolhasani, M., Lin, H. & Jensen, K. F. Material‐efficient microfluidic platform for exploratory studies of visible‐light photoredox catalysis. Angew. Chem. Int. Ed. 56, 9847–9850 (2017).

    Article  CAS  Google Scholar 

  17. Granda, J. M., Donina, L., Dragone, V., Long, D.-L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsieh, H.-W., Coley, C. W., Baumgartner, L. M., Jensen, K. F. & Robinson, R. I. Photoredox iridium-nickel dual catalyzed decarboxylative arylation cross-coupling: from batch to continuous flow via self-optimizing segmented flow reactor. Org. Process Res. Dev. 22, 542–550 (2018).

    Article  CAS  Google Scholar 

  19. Schweidtmann, A. M. et al. Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives. Chem. Eng. J. 352, 277–282 (2018).

    Article  CAS  Google Scholar 

  20. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Häse, F., Aldeghi, M., Hickman, R. J., Roch, L. M. & Aspuru-Guzik, A. Gryffin: an algorithm for Bayesian optimization of categorical variables informed by expert knowledge. Appl. Phys. Rev. 8, 031406 (2021).

    Article  ADS  Google Scholar 

  22. Taylor, C. J. et al. Accelerated chemical reaction optimization using multi-task learning. ACS Cent. Sci. 9, 957–968 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, Z., Li, X. & Zare, R. N. Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3, 1337–1344 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Torres, J. A. G. et al. A multi-objective active learning platform and web app for reaction optimization. J. Am. Chem. Soc. 144, 19999–20007 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Häse, F., Roch, L. M., Kreisbeck, C. & Aspuru-Guzik, A. Phoenics: a Bayesian optimizer for chemistry. ACS Cent. Sci. 4, 1134–1145 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Clayton, A. D. et al. Algorithms for the self-optimisation of chemical reactions. React. Chem. Eng. 4, 1545–1554 (2019).

    Article  ADS  CAS  Google Scholar 

  28. Reker, D., Hoyt, E. A., Bernardes, G. J. L. & Rodrigues, T. Adaptive optimization of chemical reactions with minimal experimental information. Cell Rep. Phys. Sci. 1, 100247 (2020).

    Article  Google Scholar 

  29. Shim, E. et al. Predicting reaction conditions from limited data through active transfer learning. Chem. Sci. 13, 6655–6668 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao, H. et al. Using machine learning to predict suitable conditions for organic reactions. ACS Cent. Sci. 4, 1465–1476 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kozlowski, M. C. On the topic of substrate scope. Org. Lett. 24, 7247–7249 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Gensch, T. & Glorius, F. The straight dope on the scope of chemical reactions. Science 352, 294–295 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Dreher, S. D. Catalysis in medicinal chemistry. React. Chem. Eng. 4, 1530–1535 (2019).

    Article  CAS  Google Scholar 

  34. Kariofillis, S. K. et al. Using data science to guide aryl bromide substrate scope analysis in a Ni/photoredox-catalyzed cross-coupling with acetals as alcohol-derived radical sources. J. Am. Chem. Soc. 144, 1045–1055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dreher, S. D. & Krska, S. W. Chemistry informer libraries: conception, early experience, and role in the future of cheminformatics. Acc. Chem. Res. 54, 1586–1596 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Kullmer, C. N. P. et al. Accelerating reaction generality and mechanistic insight through additive mapping. Science 376, 532–539 (2022).

    Article  ADS  CAS  Google Scholar 

  38. Taylor, C. J. et al. A brief introduction to chemical reaction optimization. Chem. Rev. 123, 3089–3126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Svensson, H. G., Bjerrum, E. J., Tyrchan, C., Engkvist, O. & Chehreghani, M. H. Autonomous drug design with multi-armed bandits. In 2022 IEEE International Conference on Big Data 5584–5592 (IEEE, 2022).

  40. Romeo Atance, S., Viguera Diez, J., Engkvist, O., Olsson, S. & Mercado, R. De novo drug design using reinforcement learning with graph-based deep generative models. J. Chem. Inf. Model. 62, 4863–4872 (2022).

    Article  Google Scholar 

  41. Xu, Z., Shim, E., Tewari, A. & Zimmerman, P. Adaptive sampling for discovery. In Proc. Advances in Neural Information Processing System Vol. 35, 1114–1126 (NeurIPS, 2022).

  42. Kaufmann, E., Cappe, O. & Garivier, A. On Bayesian upper confidence bounds for bandit problems. In Proc. Machine Learning Research Vol. 22, 592–600 (PMLR, 2012).

  43. Auer, P., Cesa-Bianchi, N. & Fischer, P. Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47, 235–256 (2002).

    Article  Google Scholar 

  44. Snoek, J. et al. Scalable Bayesian optimization using deep neural networks. In Proc. Machine Learning Research Vol. 27, 2171–2180 (PMLR, 2015).

  45. Stevens, J. M. et al. Advancing base metal catalysis through data science: insight and predictive models for Ni-catalyzed borylation through supervised machine learning. Organometallics 41, 1847–1864 (2022).

    Article  CAS  Google Scholar 

  46. Nielsen, M. K., Ahneman, D. T., Riera, O. & Doyle, A. G. Deoxyfluorination with sulfonyl fluorides: navigating reaction space with machine learning. J. Am. Chem. Soc. 140, 5004–5008 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, S. et al. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science 361, eaar6236 (2018).

    Article  PubMed  Google Scholar 

  48. Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. El-Faham, A. & Albericio, F. Peptide coupling reagents, more than a letter soup. Chem. Rev. 111, 6557–6602 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Dombrowski, A. W., Aguirre, A. L., Shrestha, A., Sarris, K. A. & Wang, Y. The chosen few: parallel library reaction methodologies for drug discovery. J. Org. Chem. 87, 1880–1897 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Matheron, G. Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963).

    Article  CAS  Google Scholar 

  53. Zimmerman, D., Pavlik, C., Ruggles, A. & Armstrong, M. P. An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math. Geol. 31, 375–390 (1999).

    Article  Google Scholar 

  54. Magano, J. Large-scale amidations in process chemistry: practical considerations for reagent selection and reaction execution. Org. Process Res. Dev. 26, 1562–1689 (2022).

    Article  CAS  Google Scholar 

  55. Beutner, G. L. et al. TCFH–NMI: direct access to N-acyl imidazoliums for challenging amide bond formations. Org. Lett. 20, 4218–4222 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Stevens, J. M. et al. Leveraging high-throughput experimentation to drive pharmaceutical route invention: a four-step commercial synthesis of branebrutinib (BMS-986195). Org. Process Res. Dev. 26, 1174–1183 (2022).

    Article  CAS  Google Scholar 

  57. Sperry, J. B. et al. Thermal stability assessment of peptide coupling reagents commonly used in pharmaceutical manufacturing. Org. Process Res. Dev. 22, 1262–1275 (2018).

    Article  CAS  Google Scholar 

  58. Zheng, B. et al. Preparation of the HIV attachment inhibitor BMS-663068. Part 6. Friedel–Crafts acylation/hydrolysis and amidation. Org. Process Res. Dev. 21, 1145–1155 (2017).

    Article  CAS  Google Scholar 

  59. Krishnan, K. K., Ujwaldev, S. M., Sindhu, K. S. & Anilkumar, G. Recent advances in the transition metal catalyzed etherification reactions. Tetrahedron 72, 7393–7407 (2016).

    Article  Google Scholar 

  60. Fuhrmann, E. & Talbiersky, J. Synthesis of alkyl aryl ethers by catalytic Williamson ether synthesis with weak alkylation agents. Org. Process Res. Dev. 9, 206–211 (2005).

    Article  CAS  Google Scholar 

  61. Swamy, K. C. K., Kumar, N. N. B., Balaraman, E. & Kumar, K. V. P. P. Mitsunobu and related reactions: advances and applications. Chem. Rev. 109, 2551–2651 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support for this study was provided by BMS, the Princeton Catalysis Initiative, the NSF under the CCI Center for Computer Assisted Synthesis (CHE-2202693) and the Dreyfus Program for Machine Learning in the Chemical Sciences and Engineering. J.Y.W. acknowledges support from the BMS Graduate Fellowship in Synthetic Organic Chemistry. S.K.K. acknowledges support from the NSF Graduate Research Fellowship Program under grant no. DGE-1656466. M.P. acknowledges support from the NIH F32 Ruth L. Kirschstein NRSA Fellowship (1F32GM129910-01A1). We thank J. Raab, M. Ruos and S. Gandhi for reviewing the Supplementary Information.

Author information

Authors and Affiliations

Authors

Contributions

J.Y.W. and A.G.D. designed the overall research project. J.Y.W. designed and implemented optimization models and algorithms with inputs from J.M.S., J.L., J.E.T., B.J.S. and A.G.D.; J.M.S., B.J.S., J.L., J.E.T., J.Y.W. and A.G.D. designed and planned reaction scopes for the C–H arylation reaction, the amide coupling reaction and the phenol alkylation reaction. J.M.S., S.K.K., M.-J.T., D.L.G., M.P., D.N.P., B.H., D.D., S.D., A.F., G.G.Z., S.M. and J.P. carried out high-throughput experiments and authentic product synthesis for the three reactions. J.Y.W. wrote the paper with inputs from all authors.

Corresponding author

Correspondence to Abigail G. Doyle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jolene Reid and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Testing the bandit algorithms on a previously published C–N cross-coupling reaction dataset.

a, General reaction scheme of the C–N cross-coupling reaction and reactivity heatmap grouped by base and ligand, with average yields for each base/ligand combination shown in white text. Structures for all substrates and conditions in the scope are included in the Supplementary Information. b, Top three most general base–ligand conditions for the dataset. c, Average accuracies of identifying top-3 conditions with various algorithms across 500 simulations with random starts. Exploration refers to the uniform exploration required by some algorithms, during which each condition is sequentially selected once. Different implementations of TS and Bayes UCB algorithms were used and differentiated by implementation 1 and 2 for simplicity. This plot is reproduced in Fig. S83, with the details of the algorithms included in the legend. TS: Thompson Sampling; UCB: upper confidence bound. d, Real-time optimization progress for simulation 0 (the first simulation) of a Bayes UCB (implementation 2) algorithm at n = 12, 30, 60, 99. Squares with different colors represent all reactions that have been suggested and evaluated by the algorithm at the time. The real-time empirical average for each base/ligand combination is shown in white texts.

Extended Data Fig. 2 Model architecture and workflow of bandit algorithms during reaction optimization.

The bandit algorithm suggests a condition (an arm) to evaluate first. The chemist-designed reaction scope suggests a reaction to evaluate with the selected condition. The suggested reaction is tested experimentally, and the result is used to update both the reaction scope and the bandit algorithm for the next round of proposal. Finally, a prediction model, separately trained with existing experimental results, is optionally used to propose reactions to evaluate via other mechanisms (e.g., batch proposal).

Supplementary information

Supplementary Information

Supplementary Sections 1–12, including Supplementary Text and Data, Supplementary Figs. 1–119 and Supplementary Tables 1–3 – see Contents pages for details.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.Y., Stevens, J.M., Kariofillis, S.K. et al. Identifying general reaction conditions by bandit optimization. Nature 626, 1025–1033 (2024). https://doi.org/10.1038/s41586-024-07021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07021-y

  • Springer Nature Limited

Navigation