Skip to main content
Log in

Berger et al. reply

  • Brief Communications Arising
  • Published:

From Nature

View current issue Submit your manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Young’s, shear and bulk moduli.
Fig. 2: Total stiffness.

References

  1. Milton, G. W., Nature 564, https://doi.org/10.1038/s41586-018-0724-8 (2018).

  2. Hashin, Z. & Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  3. Berger, J. B., Wadley, H. N. G. & McMeeking, R. M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543, 533–537 (2017).

    Article  CAS  ADS  Google Scholar 

  4. Norris, A. N. A differential scheme for the effective moduli of composites. Mech. Mater. 4, 1–16 (1985).

    Article  Google Scholar 

  5. Milton, G. W. in Homogenization and Effective Moduli of Materials and Media (eds Ericksen, J. L. et al.) 150–174 (Springer-Verlag, New York, 1986).

  6. Francfort, G. A. & Murat, F. Homogenization and optimal bounds in linear elasticity. Arch. Ration. Mech. Anal. 94, 307–334 (1986).

    Article  MathSciNet  Google Scholar 

  7. Cherkaev, A. Variational Methods for Structural Optimization (Springer-Verlag, New York, 2000).

    Book  Google Scholar 

  8. Milton, G. W. The Theory of Composites (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  9. Allaire, G. Shape Optimization by the Homogenization Method (Springer-Verlag, New York, 2012).

    MATH  Google Scholar 

  10. Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer Science & Business Media, New York, 2002).

    Book  Google Scholar 

  11. Bourdin, B. & Kohn, R. V. Optimization of structural topology in the high-porosity regime. J. Mech. Phys. Solids 56, 1043–1064 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  12. Berryman, J. G. & Milton, G. W. Microgeometry of random composites and porous media. J. Phys. D 21, 87–94 (1988).

    Article  ADS  Google Scholar 

  13. Cherkaev, A. V. & Gibiansky, L. V. Coupled estimates for the bulk and shear moduli of a two-dimensional isotropic elastic composite. J. Mech. Phys. Solids 41, 937–980 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  14. Sigmund, O. Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31, 2313–2329 (1994).

    Article  MathSciNet  Google Scholar 

  15. Milton, G. W. & Cherkaev, A. V. Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117, 483–493 (1995).

    Article  Google Scholar 

  16. Milton, G. W., Briane, M. & Harutyunyan, D. On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Math. Mech. Complex Syst. 5, 41–94 (2017).

    Article  MathSciNet  Google Scholar 

  17. Camar-Eddine, M. & Seppecher, P. Determination of the closure of the set of elasticity functionals. Arch. Ration. Mech. Anal. 170, 211–245 (2003).

    Article  MathSciNet  Google Scholar 

  18. Seppecher, P., Alibert, J.-J. & dell’Isola, F. Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. 319, 012018 (2011).

    Google Scholar 

  19. Andreassen, E., Lazarov, B. S. & Sigmund, O. Design of manufacturable 3D extremal elastic microstructure. Mech. Mater. 69, 1–10 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.B.B. created the ideas, conceived and designed the new material geometries and performed the structural analysis. R.M.M. developed the analytical models for the strain energy and moduli and, with H.N.G.W., contributed to refining the concepts, contextualizing the results and providing critiques and assessments.

Corresponding author

Correspondence to J. B. Berger.

Ethics declarations

Competing interests

The material geometry identified in this work to achieve the theoretical bounds in performance has been included in a Patent Cooperation Treaty (PCT/US2015/010458) by Nama Development, LLC (DE), which is majority-owned by J.B.B.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, J.B., Wadley, H.N.G. & McMeeking, R.M. Berger et al. reply. Nature 564, E2–E4 (2018). https://doi.org/10.1038/s41586-018-0725-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0725-7

  • Springer Nature Limited

Keywords

Navigation