Skip to main content
Log in

Two-dimensional material inks

  • Review Article
  • Published:

From Nature Reviews Materials

View current issue Sign up to alerts

Abstract

The development of new and more accurate fabrication technologies has, in the past few years, boosted interest in advanced device manufacturing. 2D materials, thanks to their diverse properties and dispersibility in liquid carriers, constitute a rich toolbox for ink-based applications. However, the lack of standardized production methods offering a good compromise between performance and affordability has so far been a limiting factor for the application of 2D inks. In this Review, we provide a comprehensive description of the steps involved in device fabrication for different applications, from material selection and ink formulation to printing strategies and device assembly. We conclude with a critical overview of the main scientific and technical limitations currently faced by 2D inks and the related printing technologies, and discuss their market penetration and implementation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Structure of selected 2D materials.
Fig. 2: Ink preparation by LPE.
Fig. 3: Techniques for depositing 2D inks.
Fig. 4: Applications of 2D inks.
Fig. 5: Technology readiness level of applications using 2D inks.

Similar content being viewed by others

References

  1. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  CAS  Google Scholar 

  2. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  Google Scholar 

  3. Hu, G. et al. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018).

    Article  CAS  Google Scholar 

  4. McManus, D. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343–350 (2017).

    Article  CAS  Google Scholar 

  5. Zhang, C. J. et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019).

    Article  CAS  Google Scholar 

  6. Hassan, K. et al. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. Nanoscale 12, 19007–19042 (2020).

    Article  CAS  Google Scholar 

  7. Carroll, E., Buckley, D., McNulty, D. & O’Dwyer, C. Communication — conductive paintable 2D layered MoS2 inks. ECS J. Solid. State Sci. Technol. 9, 093015 (2020).

    Article  CAS  Google Scholar 

  8. Secor, E. B., Ahn, B. Y., Gao, T. Z., Lewis, J. A. & Hersam, M. C. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv. Mater. 27, 6683–6688 (2015).

    Article  CAS  Google Scholar 

  9. Arapov, K. et al. Conductive screen printing inks by gelation of graphene dispersions. Adv. Funct. Mater. 26, 586–593 (2016).

    Article  CAS  Google Scholar 

  10. Liu, M., Chen, P.-Y. & Hurt, R. H. Graphene inks as versatile templates for printing tiled metal oxide crystalline films. Adv. Mater. 30, 1705080 (2018).

    Article  CAS  Google Scholar 

  11. Magdassi, S. & Kamyshny, A. Nanomaterials for 2D and 3D Printing (Wiley, 2017).

  12. Bonaccorso, F., Bartolotta, A., Coleman, J. N. & Backes, C. 2D-crystal-based functional inks. Adv. Mater. 28, 6136–6166 (2016).

    Article  CAS  Google Scholar 

  13. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  CAS  Google Scholar 

  14. Merck. Graphene ink. Merck https://www.sigmaaldrich.com/PT/en/substance/grapheneink1234598765 (2022).

  15. Merck. Molybdenum disulfide ink for spin/spray coating. Merck https://www.sigmaaldrich.com/PT/en/product/aldrich/901867 (2022).

  16. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  CAS  Google Scholar 

  17. Witomska, S., Leydecker, T., Ciesielski, A. & Samorì, P. Production and patterning of liquid phase-exfoliated 2D sheets for applications in optoelectronics. Adv. Funct. Mater. 29, 1901126 (2019).

    Article  CAS  Google Scholar 

  18. Wang, L., Chen, S., Shu, T. & Hu, X. Functional inks for printable energy storage applications based on 2D materials. ChemSusChem 13, 1330–1353 (2020).

    Article  CAS  Google Scholar 

  19. Yang, Y. et al. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale 11, 16–33 (2019).

    Article  CAS  Google Scholar 

  20. Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014).

    Article  CAS  Google Scholar 

  21. Ricciardulli, A. G. & Blom, P. W. M. Solution-processable 2D materials applied in light-emitting diodes and solar cells. Adv. Mater. Technol. 5, 1900972 (2020).

    Article  CAS  Google Scholar 

  22. Molle, A. et al. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 47, 6370–6387 (2018).

    Article  CAS  Google Scholar 

  23. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  24. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  25. Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    Article  CAS  Google Scholar 

  26. Wang, S. et al. Synthesis and biocompatibility of two-dimensional biomaterials. Colloids Surf. A 583, 124004 (2019).

    Article  CAS  Google Scholar 

  27. Liu, B. & Zhou, K. Recent progress on graphene-analogous 2D nanomaterials: properties, modeling and applications. Prog. Mater. Sci. 100, 99–169 (2019).

    Article  CAS  Google Scholar 

  28. Zhao, J. et al. Rise of silicene: a competitive 2D material. Prog. Mater. Sci. 83, 24–151 (2016).

    Article  CAS  Google Scholar 

  29. Wang, J., Ma, F., Liang, W. & Sun, M. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater. Today Phys. 2, 6–34 (2017).

    Article  Google Scholar 

  30. Wang, A., Wang, C., Fu, L., Wong-Ng, W. & Lan, Y. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nanomicro Lett. 9, 47 (2017).

    CAS  Google Scholar 

  31. Zhang, J., Chen, Y. & Wang, X. Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 8, 3092–3108 (2015).

    Article  CAS  Google Scholar 

  32. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).

    Article  CAS  Google Scholar 

  33. Li, B. et al. Inkjet-printed ultrathin MoS2-based electrodes for flexible in-plane microsupercapacitors. ACS Appl. Mater. Interfaces 12, 39444–39454 (2020).

    Article  CAS  Google Scholar 

  34. Brown, E. et al. 3D printing of hybrid MoS2–graphene aerogels as highly porous electrode materials for sodium ion battery anodes. Mater. Des. 170, 107689 (2019).

    Article  CAS  Google Scholar 

  35. Seo, J.-W. T. et al. Fully inkjet-printed, mechanically flexible MoS2 nanosheet photodetectors. ACS Appl. Mater. Interfaces 11, 5675–5681 (2019).

    Article  CAS  Google Scholar 

  36. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

    Article  CAS  Google Scholar 

  37. Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).

    Article  CAS  Google Scholar 

  38. Anasori, B. & Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) (Springer, 2019).

  39. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article  CAS  Google Scholar 

  40. Ashworth, D. J. & Foster, J. A. Metal–organic framework nanosheets (MONs): a new dimension in materials chemistry. J. Mater. Chem. A 6, 16292–16307 (2018).

    Article  CAS  Google Scholar 

  41. Zhao, M. et al. Ultrathin 2D metal–organic framework nanosheets. Adv. Mater. 27, 7372–7378 (2015).

    Article  CAS  Google Scholar 

  42. Yang, T. et al. Atomically thin 2D transition metal oxides: structural reconstruction, interaction with substrates, and potential applications. Adv. Mater. Interfaces 6, 1801160 (2019).

    Article  CAS  Google Scholar 

  43. Kalantar-zadeh, K. et al. Two dimensional and layered transition metal oxides. Appl. Mater. Today 5, 73–89 (2016).

    Article  Google Scholar 

  44. Breternitz, J. & Schorr, S. What defines a perovskite? Adv. Energy Mater. 8, 1802366 (2018).

    Article  CAS  Google Scholar 

  45. Zhao, Y. & Zhu, K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45, 655–689 (2016).

    Article  CAS  Google Scholar 

  46. Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).

    Article  CAS  Google Scholar 

  47. Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).

    Article  CAS  Google Scholar 

  48. Lan, C., Zhou, Z., Wei, R. & Ho, J. C. Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater. Today Energy 11, 61–82 (2019).

    Article  CAS  Google Scholar 

  49. Shi, E. et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 47, 6046–6072 (2018).

    Article  CAS  Google Scholar 

  50. Tareen, A. K., Khan, K., Aslam, M., Zhang, H. & Liu, X. Recent progress, challenges, and prospects in emerging group-VIA Xenes: synthesis, properties and novel applications. Nanoscale 13, 510–552 (2021).

    Article  CAS  Google Scholar 

  51. Khazaei, M. et al. Novel MAB phases and insights into their exfoliation into 2D MBenes. Nanoscale 11, 11305–11314 (2019).

    Article  CAS  Google Scholar 

  52. Wang, W. & Schlüter, A. D. Synthetic 2D polymers: a critical perspective and a look into the future. Macromol. Rapid Commun. 40, 1800719 (2019).

    Article  CAS  Google Scholar 

  53. Rahneshin, V., Farzad, M., Azizi, S. & Panchapakesan, B. Versatile high-performance inkjet-printed paper photo-actuators based on 2D materials. Nanotechnology 31, 025708 (2020).

    Article  CAS  Google Scholar 

  54. Kelly, A. G., Vega-Mayoral, V., Boland, J. B. & Coleman, J. N. Whiskey-phase exfoliation: exfoliation and printing of nanosheets using Irish whiskey. 2D Mater. 6, 045036 (2019).

    Article  CAS  Google Scholar 

  55. Torrisi, F. & Carey, T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 23, 73–96 (2018).

    Article  CAS  Google Scholar 

  56. Brennen, C. E. Cavitation and Bubble Dynamics (Cambridge Univ. Press, 2013).

  57. Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017).

    Article  CAS  Google Scholar 

  58. Hu, G. et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8, 278 (2017).

    Article  CAS  Google Scholar 

  59. Biccai, S. et al. Exfoliation of 2D materials by high shear mixing. 2D Mater. 6, 015008 (2019).

    Article  CAS  Google Scholar 

  60. Niu, L. et al. Production of two-dimensional nanomaterials via liquid-based direct exfoliation. Small 12, 272–293 (2016).

    Article  CAS  Google Scholar 

  61. Thomas Swan. Manufacturing process. Thomas Swan https://thomas-swan.co.uk/advanced-materials/manufacturing-process/ (2022).

  62. Liu, F. et al. Synthesis of graphene materials by electrochemical exfoliation: recent progress and future potential. Carbon Energy 1, 173–199 (2019).

    Article  Google Scholar 

  63. Lotya, M., King, P. J., Khan, U., De, S. & Coleman, J. N. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010).

    Article  CAS  Google Scholar 

  64. Leng, T. et al. Printed graphene/WS2 battery-free wireless photosensor on papers. 2D Mater. 7, 024004 (2020).

    Article  CAS  Google Scholar 

  65. Lynch, P., Khan, U., Harvey, A., Ahmed, I. & Coleman, J. N. Graphene–MoS2 nanosheet composites as electrodes for dye sensitised solar cells. Mater. Res. Express 3, 035007 (2016).

    Article  CAS  Google Scholar 

  66. Mendoza-Sanchez, B., Coelho, J., Pokle, A. & Nicolosi, V. A 2D graphene–manganese oxide nanosheet hybrid synthesized by a single step liquid-phase co-exfoliation method for supercapacitor applications. Electrochim. Acta 174, 696–705 (2015).

    Article  CAS  Google Scholar 

  67. Coelho, J. et al. Manganese oxide nanosheets and a 2D hybrid of graphene–manganese oxide nanosheets synthesized by liquid-phase exfoliation. 2D Mater. 2, 025005 (2015).

    Article  CAS  Google Scholar 

  68. Michel, M., Desai, J. A., Biswas, C. & Kaul, A. B. Engineering chemically exfoliated dispersions of two-dimensional graphite and molybdenum disulphide for ink-jet printing. Nanotechnology 27, 485602 (2016).

    Article  CAS  Google Scholar 

  69. Hyun, W. J. et al. Scalable, self-aligned printing of flexible graphene micro-supercapacitors. Adv. Energy Mater. 7, 1700285 (2017).

    Article  CAS  Google Scholar 

  70. Varrla, E. et al. Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem. Mater. 27, 1129–1139 (2015).

    Article  CAS  Google Scholar 

  71. Montazeri, K. et al. Beyond gold: spin-coated Ti3C2-based MXene photodetectors. Adv. Mater. 31, 1903271 (2019).

    Article  CAS  Google Scholar 

  72. Hu, G. et al. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci. Adv. 6, eaba5029 (2020).

    Article  CAS  Google Scholar 

  73. Kim, F., Cote, L. J. & Huang, J. Graphene oxide: surface activity and two-dimensional assembly. Adv. Mater. 22, 1954–1958 (2010).

    Article  CAS  Google Scholar 

  74. Lee, S. S. et al. Controlling nucleation and crystallization in solution-processed organic semiconductors for thin-film transistors. Adv. Mater. 21, 3605–3609 (2009).

    Article  CAS  Google Scholar 

  75. Chen, J., Tee, C. K., Shtein, M., Martin, D. C. & Anthony, J. Controlled solution deposition and systematic study of charge-transport anisotropy in single crystal and single-crystal textured TIPS pentacene thin films. Org. Electron. 10, 696–703 (2009).

    Article  CAS  Google Scholar 

  76. Wang, S. et al. Organic field-effect transistors based on highly ordered single polymer fibers. Adv. Mater. 24, 417–420 (2012).

    Article  CAS  Google Scholar 

  77. Zhu, Y. et al. Evaporation-induced vertical alignment enabling directional ion transport in a 2D-nanosheet-based battery electrode. Adv. Mater. 32, 1907941 (2020).

    Article  CAS  Google Scholar 

  78. Norrman, K., Ghanbari-Siahkali, A. & Larsen, N. B. 6 Studies of spin-coated polymer films. Annu. Rep. Sect. C 101, 174 (2005).

    Article  CAS  Google Scholar 

  79. Akuzum, B. et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 12, 2685–2694 (2018).

    Article  CAS  Google Scholar 

  80. Mendoza-Sánchez, B., Coelho, J., Pokle, A. & Nicolosi, V. A study of the charge storage properties of a MoSe2 nanoplatelets/SWCNTs electrode in a Li-ion based electrolyte. Electrochim. Acta 192, 1–7 (2016).

    Article  CAS  Google Scholar 

  81. Naficy, S. et al. Graphene oxide dispersions: tuning rheology to enable fabrication. Mater. Horiz. 1, 326–331 (2014).

    Article  CAS  Google Scholar 

  82. Girotto, C., Moia, D., Rand, B. P. & Heremans, P. High-performance organic solar cells with spray-coated hole-transport and active layers. Adv. Funct. Mater. 21, 64–72 (2011).

    Article  CAS  Google Scholar 

  83. Lin, H.-W., Chang, C.-P., Hwu, W.-H. & Ger, M.-D. The rheological behaviors of screen-printing pastes. J. Mater. Process. Technol. 197, 284–291 (2008).

    Article  CAS  Google Scholar 

  84. Ng, L. W. et al. Printing of Graphene and Related 2D Materials (Springer, 2018).

  85. Dai, J. et al. Printed gas sensors. Chem. Soc. Rev. 49, 1756–1789 (2020).

    Article  CAS  Google Scholar 

  86. Secor, E. B. et al. Gravure printing of graphene for large-area flexible electronics. Adv. Mater. 26, 4533–4538 (2014).

    Article  CAS  Google Scholar 

  87. Lahti, M., Leppävuori, S. & Lantto, V. Gravure-offset-printing technique for the fabrication of solid films. Appl. Surf. Sci. 142, 367–370 (1999).

    Article  CAS  Google Scholar 

  88. Nguyen, H. A. D., Lee, C., Shin, K. & Lee, D. An investigation of the ink-transfer mechanism during the printing phase of high-resolution roll-to-roll gravure printing. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1516–1524 (2015).

    Article  CAS  Google Scholar 

  89. Zhang, C. J. et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 28, 1705506 (2018).

    Article  CAS  Google Scholar 

  90. Li, J. et al. Efficient inkjet printing of graphene. Adv. Mater. 25, 3985–3992 (2013).

    Article  CAS  Google Scholar 

  91. An, B. W. et al. High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks. Adv. Mater. 27, 4322–4328 (2015).

    Article  CAS  Google Scholar 

  92. Singh, M., Haverinen, H. M., Dhagat, P. & Jabbour, G. E. Inkjet printing — process and its applications. Adv. Mater. 22, 673–685 (2010).

    Article  CAS  Google Scholar 

  93. Jang, D., Kim, D. & Moon, J. Influence of fluid physical properties on ink-jet printability. Langmuir 25, 2629–2635 (2009).

    Article  CAS  Google Scholar 

  94. Derby, B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395–414 (2010).

    Article  CAS  Google Scholar 

  95. Wang, Y., Zhang, Y.-Z. Z., Dubbink, D. & ten Elshof, J. E. Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy 49, 481–488 (2018).

    Article  CAS  Google Scholar 

  96. Vural, M. et al. Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding. Adv. Funct. Mater. 28, 1801972 (2018).

    Article  CAS  Google Scholar 

  97. Torrisi, F. et al. Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012).

    Article  CAS  Google Scholar 

  98. Secor, E. B., Prabhumirashi, P. L., Puntambekar, K., Geier, M. L. & Hersam, M. C. Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4, 1347–1351 (2013).

    Article  CAS  Google Scholar 

  99. Soltman, D. & Subramanian, V. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24, 2224–2231 (2008).

    Article  CAS  Google Scholar 

  100. Liu, Y. et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat. Commun. 10, 2409 (2019).

    Article  CAS  Google Scholar 

  101. Song, D. et al. High-resolution transfer printing of graphene lines for fully printed, flexible electronics. ACS Nano 11, 7431–7439 (2017).

    Article  CAS  Google Scholar 

  102. Fu, K., Yao, Y., Dai, J. & Hu, L. Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 29, 1603486 (2017).

    Article  CAS  Google Scholar 

  103. Ahn, B. Y. et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009).

    Article  CAS  Google Scholar 

  104. Yang, W. et al. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 31, 1902725 (2019).

    Article  CAS  Google Scholar 

  105. Zhu, C. et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015).

    Article  CAS  Google Scholar 

  106. García-Tuñon, E. et al. Printing in three dimensions with graphene. Adv. Mater. 27, 1688–1693 (2015).

    Article  CAS  Google Scholar 

  107. Eom, W. et al. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11, 2825 (2020).

    Article  CAS  Google Scholar 

  108. Jiang, Y. et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 28, 1707024 (2018).

    Article  CAS  Google Scholar 

  109. Skylar-Scott, M. A., Mueller, J., Visser, C. W. & Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019).

    Article  CAS  Google Scholar 

  110. Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article  CAS  Google Scholar 

  111. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  Google Scholar 

  112. Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Energy storage: the future enabled by nanomaterials. Science 366, eaan8285 (2019).

    Article  CAS  Google Scholar 

  113. Li, J. et al. Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Mater. 16, 212–219 (2019).

    Article  Google Scholar 

  114. Wang, H. et al. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 50, 1354–1390 (2021).

    Article  CAS  Google Scholar 

  115. Hao, C. et al. Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 28, 3194–3201 (2016).

    Article  CAS  Google Scholar 

  116. Yang, W. et al. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 31, 1902725 (2019).

    Article  CAS  Google Scholar 

  117. Zhang, J. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020).

    Article  CAS  Google Scholar 

  118. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    Article  CAS  Google Scholar 

  119. Wu, Y. & Yu, Y. 2D material as anode for sodium ion batteries: recent progress and perspectives. Energy Storage Mater. 16, 323–343 (2019).

    Article  Google Scholar 

  120. Zhang, C. et al. Two-dimensional organic cathode materials for alkali-metal-ion batteries. J. Energy Chem. 27, 86–98 (2018).

    Article  Google Scholar 

  121. Zhang, C. et al. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10, 849 (2019).

    Article  Google Scholar 

  122. Ghazi, Z. A. et al. MoS2/Celgard separator as efficient polysulfide barrier for long-life lithium–sulfur batteries. Adv. Mater. 29, 1606817 (2017).

    Article  CAS  Google Scholar 

  123. Shen, K., Mei, H. L., Li, B., Ding, J. W. & Yang, S. B. 3D printing sulfur copolymer–graphene architectures for Li–S batteries. Adv. Energy Mater. 8, 1701527 (2018).

    Article  CAS  Google Scholar 

  124. Lacey, S. D. et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, e1705651 (2018).

    Article  CAS  Google Scholar 

  125. Qiao, Y. et al. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 28, 1805899 (2018).

    Article  CAS  Google Scholar 

  126. Lin, X. et al. 3D printing of free-standing ‘O2 breathable’ air electrodes for high-capacity and long-life Na–O2 batteries. Chem. Mater. 32, 3018–3027 (2020).

    Article  CAS  Google Scholar 

  127. Shen, K., Li, B. & Yang, S. 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Mater. 24, 670–675 (2020).

    Article  Google Scholar 

  128. Yu, Y. et al. 3D printing of hierarchical graphene lattice for advanced na metal anodes. ACS Appl. Energy Mater. 2, 3869–3877 (2019).

    Article  CAS  Google Scholar 

  129. Zhang, Q., Zhang, J., Wan, S., Wang, W. & Fu, L. Stimuli-responsive 2D materials beyond graphene. Adv. Funct. Mater. 28, 1802500 (2018).

    Article  CAS  Google Scholar 

  130. Tyagi, D. et al. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12, 3535–3559 (2020).

    Article  CAS  Google Scholar 

  131. Meng, Z., Stolz, R. M., Mendecki, L. & Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119, 478–598 (2019).

    Article  CAS  Google Scholar 

  132. Anichini, C. et al. Chemical sensing with 2D materials. Chem. Soc. Rev. 47, 4860–4908 (2018).

    Article  CAS  Google Scholar 

  133. Liu, X., Ma, T., Pinna, N. & Zhang, J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27, 1702168 (2017).

    Article  CAS  Google Scholar 

  134. Lee, E., Vahidmohammadi, A., Yoon, Y. S., Beidaghi, M. & Kim, D. J. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 4, 1603–1611 (2019).

    Article  CAS  Google Scholar 

  135. Jin, X.-F. et al. Inkjet-printed MoS2/PVP hybrid nanocomposite for enhanced humidity sensing. Sens. Actuators A 316, 112388 (2020).

    Article  CAS  Google Scholar 

  136. Kai Jin Tian, H. L., Dong, Y. P. & Chu, X. F. Application of black phosphorus nanosheets modified electrode for electrochemical determination of ascorbic acid. Russ. J. Electrochem. 55, 1221–1228 (2019).

    Article  Google Scholar 

  137. Walters, J. G., Ahmed, S., Terrero Rodríguez, I. M. & O’Neil, G. D. Trace analysis of heavy metals (Cd, Pb, Hg) using native and modified 3D printed graphene/poly(lactic acid) composite electrodes. Electroanalysis 32, 859–866 (2020).

    Article  CAS  Google Scholar 

  138. Chen, X. & Ahn, J. H. Biodegradable and bioabsorbable sensors based on two-dimensional materials. J. Mater. Chem. B 8, 1082–1092 (2020).

    Article  CAS  Google Scholar 

  139. Singhal, C., Khanuja, M., Chaudhary, N., Pundir, C. S. & Narang, J. Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Sci. Rep. 8, 7734 (2018).

    Article  CAS  Google Scholar 

  140. Liu, J. et al. MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 29, 1807326 (2019).

    Article  CAS  Google Scholar 

  141. Cai, Y. et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12, 56–62 (2018).

    Article  CAS  Google Scholar 

  142. Trung, T. Q. & Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28, 4338–4372 (2016).

    Article  CAS  Google Scholar 

  143. Cheng, Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14, 2145–2155 (2020).

    Article  CAS  Google Scholar 

  144. Huang, K. et al. Three-dimensional printing of a tunable graphene-based elastomer for strain sensors with ultrahigh sensitivity. Carbon 143, 63–72 (2019).

    Article  CAS  Google Scholar 

  145. Liu, G. et al. A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors 18, 1400 (2018).

    Article  CAS  Google Scholar 

  146. Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015).

    Article  CAS  Google Scholar 

  147. Cai, X. K., Luo, Y. T., Liu, B. & Cheng, H. M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47, 6224–6266 (2018).

    Article  CAS  Google Scholar 

  148. Zhang, C. J. et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 29, 1702678 (2017).

    Article  CAS  Google Scholar 

  149. Worsley, R. et al. All-2D material inkjet-printed capacitors: toward fully printed integrated circuits. ACS Nano 13, 54–60 (2018).

    Article  CAS  Google Scholar 

  150. Sarycheva, A. et al. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018).

    Article  CAS  Google Scholar 

  151. Xie, Y. et al. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Adv. Mater. 30, 1804858 (2018).

    Article  CAS  Google Scholar 

  152. Liang, M. et al. Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides. npj 2D Mater. Appl. 4, 40 (2020).

    Article  CAS  Google Scholar 

  153. Ma, Y. & Zhi, L. Graphene-based transparent conductive films: material systems, preparation and applications. Small Methods 3, 1800199 (2019).

    Article  CAS  Google Scholar 

  154. Chen, W., Liu, L.-X., Zhang, H.-B. & Yu, Z.-Z. Flexible, transparent, and conductive Ti3C2Tx MXene–silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643–16653 (2020).

    Article  CAS  Google Scholar 

  155. Han, Y. et al. In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding. Adv. Electron. Mater. 4, 1800156 (2018).

    Article  CAS  Google Scholar 

  156. Ippolito, S. et al. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nat. Nanotechnol. 16, 592–598 (2021).

    Article  CAS  Google Scholar 

  157. Chung, S., Cho, K. & Lee, T. Recent progress in inkjet-printed thin-film transistors. Adv. Sci. 6, 1801445 (2019).

    Article  CAS  Google Scholar 

  158. Jaakkola, K. et al. Screen-printed and spray coated graphene-based RFID transponders. 2D Mater. 7, 015019 (2020).

    Article  CAS  Google Scholar 

  159. Han, M. et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020).

    Article  CAS  Google Scholar 

  160. Wang, B. et al. Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. Nano Res. 13, 891–918 (2020).

    Article  CAS  Google Scholar 

  161. Qiu, Q. & Huang, Z. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 33, 2008126 (2021).

    Article  CAS  Google Scholar 

  162. Zhang, Y. et al. Extending the spectral responsivity of MoS2 phototransistors by incorporating up-conversion microcrystals. Adv. Opt. Mater. 6, 1800660 (2018).

    Article  CAS  Google Scholar 

  163. Curreli, N. et al. Liquid phase exfoliated indium selenide based highly sensitive photodetectors. Adv. Funct. Mater. 30, 1908427 (2020).

    Article  CAS  Google Scholar 

  164. Min, M., Hossain, R. F., Adhikari, N. & Kaul, A. B. Inkjet-printed organohalide 2D layered perovskites for high-speed photodetectors on flexible polyimide substrates. ACS Appl. Mater. Interfaces 12, 10809–10819 (2020).

    Article  CAS  Google Scholar 

  165. Xie, Y. et al. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Adv. Mater. 30, 1804858 (2018).

    Article  CAS  Google Scholar 

  166. Liang, Q. et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 31, 1807609 (2019).

    Article  CAS  Google Scholar 

  167. Iqbal, M. Z. & Rehman, A. U. Recent progress in graphene incorporated solar cell devices. Sol. Energy 69, 634–647 (2018).

    Article  CAS  Google Scholar 

  168. Yin, L. J. et al. MXenes for solar cells. Nanomicro Lett. 13, 78 (2021).

    Google Scholar 

  169. You, P., Tang, G. & Yan, F. Two-dimensional materials in perovskite solar cells. Mater. Today Energy 11, 128–158 (2019).

    Article  CAS  Google Scholar 

  170. Das, S., Pandey, D., Thomas, J. & Roy, T. The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater. 31, 1802722 (2019).

    Article  CAS  Google Scholar 

  171. Yang, L. et al. Surface-modified metallic Ti3C2Tx MXene as electron transport layer for planar heterojunction perovskite solar cells. Adv. Funct. Mater. 29, 1905694 (2019).

    Article  CAS  Google Scholar 

  172. Huo, N. & Konstantatos, G. Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 30, 1801164 (2018).

    Article  CAS  Google Scholar 

  173. Gaharwar, A. K. et al. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv. Mater. 31, 1900332 (2019).

    Article  CAS  Google Scholar 

  174. Chakraborty, P. K. et al. Advancements in therapeutics via 3D printed multifunctional architectures from dispersed 2D nanomaterial inks. Small 16, 2004900 (2020).

    Article  CAS  Google Scholar 

  175. Yang, J. W. et al. Printable graphene oxide micropatterns for a bio-subretinal chip. Adv. Healthc. Mater. 7, e1800365 (2018).

    Article  CAS  Google Scholar 

  176. Yang, R., Zhou, J. Z., Yang, C., Qiu, L. & Cheng, H. M. Recent progress in 3D printing of 2D material-based macrostructures. Adv. Mater. Technol. 5, 1901066 (2020).

    Article  CAS  Google Scholar 

  177. Zheng, Y. et al. 2D nanomaterials for tissue engineering and regenerative nanomedicines: recent advances and future challenges. Adv. Healthc. Mater. 10, 2001743 (2021).

    Article  CAS  Google Scholar 

  178. Cabral, C. S. D., Miguel, S. P., de Melo-Diogo, D., Louro, R. O. & Correia, I. J. Green reduced graphene oxide functionalized 3D printed scaffolds for bone tissue regeneration. Carbon 146, 513–523 (2019).

    Article  CAS  Google Scholar 

  179. Pan, S. et al. 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction. Adv. Sci. 7, 1901511 (2020).

    Article  CAS  Google Scholar 

  180. Guiney, L. M. et al. Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites. Nano Lett. 18, 3488–3493 (2018).

    Article  CAS  Google Scholar 

  181. Zhong, C. et al. Potential use of 3D-printed graphene oxide scaffold for construction of the cartilage layer. J. Nanobiotechnol. 18, 97 (2020).

    Article  CAS  Google Scholar 

  182. Yang, B. W. et al. 2D-black-phosphorus-reinforced 3D-printed scaffolds: a stepwise countermeasure for osteosarcoma. Adv. Mater. 30, 1705611 (2018).

    Article  CAS  Google Scholar 

  183. Zhang, X. & Ma, J. Photothermal effect of 3D printed hydroxyapatite composite scaffolds incorporated with graphene nanoplatelets. Ceram. Int. 47, 6336–6340 (2021).

    Article  CAS  Google Scholar 

  184. Yang, Q. H. et al. Engineering 2D mesoporous silica@MXene-integrated 3D-printing scaffolds for combinatory osteosarcoma therapy and NO-augmented bone regeneration. Small 16, 1906814 (2020).

    Article  CAS  Google Scholar 

  185. Wang, C. et al. Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects. Biofabrication 12, 035004 (2020).

    Article  CAS  Google Scholar 

  186. Thurakkal, S., Feldstein, D., Perea-Causín, R., Malic, E. & Zhang, X. The art of constructing black phosphorus nanosheet based heterostructures: from 2D to 3D. Adv. Mater. 33, 2005254 (2021).

    Article  CAS  Google Scholar 

  187. Ma, B., Martín, C., Kurapati, R. & Bianco, A. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chem. Soc. Rev. 49, 6224–6247 (2020).

    Article  CAS  Google Scholar 

  188. Fadeel, B. et al. Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano 12, 10582–10620 (2018).

    Article  CAS  Google Scholar 

  189. Li, K. et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 2000842 (2020).

    Article  CAS  Google Scholar 

  190. Wang, F. et al. Inter-flake quantum transport of electrons and holes in inkjet-printed graphene devices. Adv. Funct. Mater. 31, 2007478 (2021).

    Article  CAS  Google Scholar 

  191. Yan, K., Li, J., Pan, L. & Shi, Y. Inkjet printing for flexible and wearable electronics. Appl. Mater. 8, 120705 (2020).

    Article  CAS  Google Scholar 

  192. Graphene Flagship. Technology and innovation roadmap. Graphene Flagship https://graphene-flagship.eu/innovation/industrialisation/roadmap/ (2020).

  193. Kramer, D. Europe’s experiment in funding graphene research is paying off. Phys. Today 74, 20–24 (2021).

    Google Scholar 

  194. Macadam, N. et al. 100 m min−1 industrial-scale flexographic printing of graphene-incorporated conductive ink. Adv. Eng. Mater. https://doi.org/10.1002/adem.202101217 (2021).

  195. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  196. Marinho, B., Ghislandi, M., Tkalya, E., Koning, C. E. & de With, G. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 221, 351–358 (2012).

    Article  CAS  Google Scholar 

  197. Majee, S., Liu, C., Wu, B., Zhang, S. L. & Zhang, Z. B. Ink-jet printed highly conductive pristine graphene patterns achieved with water-based ink and aqueous doping processing. Carbon 114, 77–83 (2017).

    Article  CAS  Google Scholar 

  198. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  199. Zhan, Z., An, J., Wei, Y., Tran, V. T. & Du, H. Inkjet-printed optoelectronics. Nanoscale 9, 965–993 (2017).

    Article  CAS  Google Scholar 

  200. Browne, M. P., Novotný, F., Sofer, Z. & Pumera, M. 3D printed graphene electrodes’ electrochemical activation. ACS Appl. Mater. Interfaces 10, 40294–40301 (2018).

    Article  CAS  Google Scholar 

  201. Kaidarova, A. et al. Wearable multifunctional printed graphene sensors. NPJ Flex. Electron 3, 15 (2019).

    Article  CAS  Google Scholar 

  202. Balendhran, S., Walia, S., Nili, H., Sriram, S. & Bhaskaran, M. Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11, 640–652 (2015).

    Article  CAS  Google Scholar 

  203. Liu, J., Yang, Y., Lyu, P., Nachtigall, P. & Xu, Y. Few-layer silicene nanosheets with superior lithium-storage properties. Adv. Mater. 30, 1800838 (2018).

    Article  CAS  Google Scholar 

  204. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  205. Lewis, E. A., Brent, J. R., Derby, B., Haigh, S. J. & Lewis, D. J. Solution processing of two-dimensional black phosphorus. Chem. Commun. 53, 1445–1458 (2017).

    Article  CAS  Google Scholar 

  206. Long, G. et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 16, 7768–7773 (2016).

    Article  CAS  Google Scholar 

  207. Xiao, H. et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11, 7284–7292 (2017).

    Article  CAS  Google Scholar 

  208. Kumar, V. et al. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces 8, 22860–22868 (2016).

    Article  CAS  Google Scholar 

  209. Vishnoi, P. et al. Covalently linked heterostructures of phosphorene with MoS2/MoSe2 and their remarkable hydrogen evolution reaction activity. ACS Appl. Mater. Interfaces 11, 27780–27787 (2019).

    Article  CAS  Google Scholar 

  210. Zhang, K., Feng, Y., Wang, F., Yang, Z. & Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C. 5, 11992–12022 (2017).

    Article  CAS  Google Scholar 

  211. Lu, S. et al. Flexible, print-in-place 1D–2D thin-film transistors using aerosol jet printing. ACS Nano 13, 11263–11272 (2019).

    Article  CAS  Google Scholar 

  212. Kelly, A. G., Finn, D., Harvey, A., Hallam, T. & Coleman, J. N. All-printed capacitors from graphene–BN–graphene nanosheet heterostructures. Appl. Phys. Lett. 109, 23107 (2016).

    Article  CAS  Google Scholar 

  213. Khan, A. F., Brownson, D. A. C., Randviir, E. P., Smith, G. C. & Banks, C. E. 2D hexagonal boron nitride (2D-hBN) explored for the electrochemical sensing of dopamine. Anal. Chem. 88, 9729–9737 (2016).

    Article  CAS  Google Scholar 

  214. Bojdys, M. J. et al. Exfoliation of crystalline 2D carbon nitride: thin sheets, scrolls and bundles via mechanical and chemical routes. Macromol. Rapid Commun. 34, 850–854 (2013).

    Article  CAS  Google Scholar 

  215. Yang, S. et al. C3N — a 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv. Mater. 29, 1605625 (2017).

    Article  CAS  Google Scholar 

  216. Liu, J. et al. Microcontact-printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv. Mater. 27, 712–718 (2015).

    Article  CAS  Google Scholar 

  217. He, P. et al. Patterned carbon nitride–based hybrid aerogel membranes via 3D printing for broadband solar wastewater remediation. Adv. Funct. Mater. 28, 1801121 (2018).

    Article  CAS  Google Scholar 

  218. Wu, L. et al. One-step preparation of disposable multi-functionalized g-C3N4 based electrochemiluminescence immunosensor for the detection of CA125. Sens. Actuators B 226, 62–68 (2016).

    Article  CAS  Google Scholar 

  219. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  220. Gu, X. et al. A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells. Adv. Energy Mater. 3, 1262–1268 (2013).

    Article  CAS  Google Scholar 

  221. Wells, R. A., Johnson, H., Lhermitte, C. R., Kinge, S. & Sivula, K. Roll-to-roll deposition of semiconducting 2D nanoflake films of transition metal dichalcogenides for optoelectronic applications. ACS Appl. Nano Mater. 2, 7705–7712 (2019).

    Article  CAS  Google Scholar 

  222. Li, K. et al. An ultrafast conducting polymer@mXene positive electrode with high volumetric capacitance for advanced asymmetric supercapacitors. Small 16, 1906851 (2020).

    Article  CAS  Google Scholar 

  223. Lipatov, A. et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. https://doi.org/10.1126/sciadv.aat0491 (2018).

  224. Jiang, X. et al. Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics. npj 2D Mater. Appl. 3, 34 (2019).

    Article  CAS  Google Scholar 

  225. Quah, H. S., Ng, L. T., Donnadieu, B., Tan, G. K. & Vittal, J. J. Molecular scissoring: facile 3D to 2D conversion of lanthanide metal organic frameworks via solvent exfoliation. Inorg. Chem. 55, 10851–10854 (2016).

    Article  CAS  Google Scholar 

  226. Wang, X. et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 8, 14460 (2017).

    Article  CAS  Google Scholar 

  227. Shrestha, N. K. et al. Cu–Fe–NH2 based metal–organic framework nanosheets via drop-casting for highly efficient oxygen evolution catalysts durable at ultrahigh currents. J. Mater. Chem. A 8, 24408–24418 (2020).

    Article  CAS  Google Scholar 

  228. Campbell, M. G., Sheberla, D., Liu, S. F., Swager, T. M. & Dincă, M. Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 54, 4349–4352 (2015).

    Article  CAS  Google Scholar 

  229. He, L. et al. 2D zirconium-based metal–organic framework nanosheets for highly sensitive detection of mucin 1: consistency between electrochemical and surface plasmon resonance methods. 2D Mater. 4, 025098 (2017).

    Article  CAS  Google Scholar 

  230. Arun Kumar, S. et al. Two-dimensional metal organic frameworks for biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13, e1674 (2021).

    Article  CAS  Google Scholar 

  231. Xiao, X. et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 11296 (2016).

    Article  CAS  Google Scholar 

  232. Sun, Z. et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014).

    Article  CAS  Google Scholar 

  233. Ahn, C. H., Rabe, K. M. & Triscone, J. M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

    Article  CAS  Google Scholar 

  234. Ren, B., Wang, Y. & Ou, J. Z. Engineering two-dimensional metal oxides: via surface functionalization for biological applications. J. Mater. Chem. B 8, 1108–1127 (2020).

    Article  CAS  Google Scholar 

  235. Alsaif, M. M. Y. A. et al. High-performance field effect transistors using electronic inks of 2D molybdenum oxide nanoflakes. Adv. Funct. Mater. 26, 91–100 (2016).

    Article  CAS  Google Scholar 

  236. Liu, J. et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano 10, 3536–3542 (2016).

    Article  CAS  Google Scholar 

  237. Hu, J. et al. Spontaneously self-assembly of a 2D/3D heterostructure enhances the efficiency and stability in printed perovskite solar cells. Adv. Energy Mater. 10, 2000173 (2020).

    Article  CAS  Google Scholar 

  238. Shi, X.-B. et al. Optical energy losses in organic–inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6, 1800667 (2018).

    Article  CAS  Google Scholar 

  239. Wu, Z., Parvez, K., Feng, X. & Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487 (2013).

    Article  CAS  Google Scholar 

  240. Hantanasirisakul, K. et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2, 1600050 (2016).

    Article  CAS  Google Scholar 

  241. Garlapati, S. K. et al. Printed electronics based on inorganic semiconductors: from processes and materials to devices. Adv. Mater. 30, 1707600 (2018).

    Article  CAS  Google Scholar 

  242. Li, H. & Liang, J. Recent development of printed micro-supercapacitors: printable materials, printing technologies, and perspectives. Adv. Mater. 32, 1805864 (2020).

    Article  CAS  Google Scholar 

  243. Hyun, W. J., Secor, E. B., Hersam, M. C., Frisbie, C. D. & Francis, L. F. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv. Mater. 27, 109–115 (2015).

    Article  CAS  Google Scholar 

  244. Zhang, L. et al. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography. Adv. Mater. 24, 436–440 (2012).

    Article  CAS  Google Scholar 

  245. Li, J., Naiini, M. M., Vaziri, S., Lemme, M. C. & Östling, M. Inkjet printing of MoS2. Adv. Funct. Mater. 24, 6524–6531 (2014).

    Article  CAS  Google Scholar 

  246. Ghosh, S., Parker, S. T., Wang, X., Kaplan, D. L. & Lewis, J. A. Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv. Funct. Mater. 18, 1883–1889 (2008).

    Article  CAS  Google Scholar 

  247. Liu, Y. et al. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 28, 1706592 (2018).

    Article  CAS  Google Scholar 

  248. Lin, Y., Gao, Y., Fang, F. & Fan, Z. Recent progress on printable power supply devices and systems with nanomaterials. Nano Res. 11, 3065–3087 (2018).

    Article  CAS  Google Scholar 

  249. Pang, Y. et al. Additive manufacturing of batteries. Adv. Funct. Mater. 30, 1906244 (2020).

    Article  CAS  Google Scholar 

  250. Foster, J. A., Henke, S., Schneemann, A., Fischer, R. A. & Cheetham, A. K. Liquid exfoliation of alkyl-ether functionalised layered metal–organic frameworks to nanosheets. Chem. Commun. 52, 10474–10477 (2016).

    Article  CAS  Google Scholar 

  251. Smith, R. J. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).

    Article  CAS  Google Scholar 

  252. Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    Article  CAS  Google Scholar 

  253. Graphene Flagship. Annual report 2020 (Graphene Flagship, 2020).

  254. Graphene Flagship. Annual report 2019 (Graphene Flagship, 2019).

  255. Guidetti, G. et al. Photocatalytic activity of exfoliated graphite–TiO2 nanoparticle composites. Nanoscale 11, 19301–19314 (2019).

    Article  CAS  Google Scholar 

  256. Carbon Waters. Applications. CW https://www.carbon-waters.com/applications/ (2021).

  257. Graphene-XT. Graphene-based next generation materials. Graphene-XT https://www.graphene-xt.com/en/ (2021).

  258. Lamanna, E. et al. Mechanically stacked, two-terminal graphene-based perovskite/silicon tandem solar cell with efficiency over 26%. Joule 4, 865–881 (2020).

    Article  CAS  Google Scholar 

  259. Malik, R. et al. Synthesis of layered silicon-graphene hetero-structures by wet jet milling for high capacity anodes in Li-ion batteries. 2D Mater. 8, 015012 (2020).

    Article  CAS  Google Scholar 

  260. Rowley-Neale, S. J., Smith, G. C. & Banks, C. E. Mass-producible 2D-MoS2-impregnated screen-printed electrodes that demonstrate efficient electrocatalysis toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces 9, 22539–22548 (2017).

    Article  CAS  Google Scholar 

  261. Bessonov, A. A. et al. Compound quantum dot–perovskite optical absorbers on graphene enhancing short-wave infrared photodetection. ACS Nano 11, 5547–5557 (2017).

    Article  CAS  Google Scholar 

  262. Huang, C.-B. B. et al. Molecule–graphene hybrid materials with tunable mechanoresponse: highly sensitive pressure sensors for health monitoring. Adv. Mater. 31, 1804600 (2019).

    Article  CAS  Google Scholar 

  263. Ejehi, F. et al. Graphene oxide papers in nanogenerators for self-powered humidity sensing by finger tapping. Sci. Rep. 10, 7312 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Research Council (ERC 3D2Dprint). S.P. is grateful for funding by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 713567 and Science Foundation Ireland Research Centre award 12/RC/2278_P2.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Valeria Nicolosi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Anupama Kaul, Alessandro Molle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BeDimensional: https://bedimensional.com/applications/

Commercial roll-to-roll printed devices: https://haydale.com/products/inks/

Metrohm DropSens screen-printed electrodes: https://www.dropsens.com/en/screen_printed_electrodes_pag.html

Skeleton Technologies ultracapacitors: https://www.skeletontech.com/ultracapacitor-technology

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinilla, S., Coelho, J., Li, K. et al. Two-dimensional material inks. Nat Rev Mater 7, 717–735 (2022). https://doi.org/10.1038/s41578-022-00448-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00448-7

  • Springer Nature Limited

This article is cited by

Navigation