Skip to main content
Log in

Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material

  • Letter
  • Published:

From Nature Photonics

View current issue Submit your manuscript

Abstract

The size and operating energy of a nonlinear optical device are fundamentally constrained by the weakness of the nonlinear optical response of common materials1. Here, we report that a 50-nm-thick optical metasurface made of optical dipole antennas coupled to an epsilon-near-zero material exhibits a broadband (∼400 nm bandwidth) and ultrafast (recovery time less than 1 ps) intensity-dependent refractive index n2 as large as −3.73 ± 0.56 cm2 GW−1. Furthermore, the metasurface exhibits a maximum optically induced refractive index change of ±2.5 over a spectral range of ∼200 nm. The inclusion of low-Q nanoantennas on an epsilon-near-zero thin film not only allows the design of a metasurface with an unprecedentedly large nonlinear optical response, but also offers the flexibility to tailor the sign of the response. Our technique removes a longstanding obstacle in nonlinear optics: the lack of materials with an ultrafast nonlinear contribution to refractive index on the order of unity. It consequently offers the possibility to design low-power nonlinear nano-optical devices with orders-of-magnitude smaller footprints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Design concept and linear response of the coupled structure.
Fig. 2: Nonlinear response of the coupled system.
Fig. 3: Maximum nonlinear contribution to the refractive index as a function of incident energy density.

Similar content being viewed by others

References

  1. Alam, M. Z., De Leon, I. & Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352, 795–797 (2016).

    Article  ADS  Google Scholar 

  2. Miller, D. A. B. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).

    Article  ADS  Google Scholar 

  3. Sherwood-Droz, N. et al. Optical 4×4 hitless silicon router for optical networks-on-chip (NoC). Opt. Express 16, 15915–15922 (2008).

    Article  ADS  Google Scholar 

  4. Boyd, R. W., Gehr, R. J., Fischer, G. L. & SipeJ. Nonlinear optical properties of nanocomposite materials. J. Eur. Opt. Soc. A 5, 505–512 (1996).

    Google Scholar 

  5. Boyd, R. W. & Sipe, J. E. Nonlinear optical susceptibilities of layered composite materials. J. Opt. Soc. Am. B 11, 297–303 (1994).

    Article  ADS  Google Scholar 

  6. Sarychev, A. K. & Shalaev, V. M. Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Phys. Rep. 335, 275–371 (2000).

    Article  ADS  Google Scholar 

  7. Abb, M., Albella, P., Aizpurua, J. & Muskens, O. L. All-optical control of a single plasmonic nanoantenna–ITO hybrid. Nano Lett. 11, 2457–2463 (2011).

    Article  ADS  Google Scholar 

  8. Abb, M., Wang, Y., de Groot, C. H. & Muskens, O. L. Hotspot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nat. Commun. 5, 4869 (2014).

  9. Lee, J. et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511, 65–69 (2014).

    Article  ADS  Google Scholar 

  10. Yang, Y. et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 15, 7388–7393 (2015).

    Article  ADS  Google Scholar 

  11. Minovich, A. E. et al. Functional and nonlinear optical metasurfaces. Laser Photon-. Rev. 9, 195–213 (2015).

    Article  Google Scholar 

  12. Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).

    Article  Google Scholar 

  13. Liberal, I., Mahmoud, A. M., Li, Y., Edwards, B. & Engheta, N. Photonic doping of epsilon-near-zero media. Science 355, 1058–1062 (2017).

    Article  ADS  Google Scholar 

  14. Engheta, N. Pursuing near-zero response. Science 340, 286–287 (2013).

    Article  ADS  Google Scholar 

  15. Edwards, B., Alù, A., Young, M. E., Silveirinha, M. & Engheta, N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008).

    Article  ADS  Google Scholar 

  16. Alù, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

    Article  ADS  Google Scholar 

  17. Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Article  ADS  Google Scholar 

  18. Caspani, L. et al. Enhanced nonlinear refractive index in ε-near-zero materials. Phys. Rev. Lett. 116, 233901 (2016).

    Article  ADS  Google Scholar 

  19. Neira, A. D. et al. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 6, 7757 (2015).

    Article  Google Scholar 

  20. Capretti, A., Wang, Y., Engheta, N. & Dal Negro, L. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt. Lett. 40, 1500–1503 (2015).

    Article  ADS  Google Scholar 

  21. Luk, T. S. et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl. Phys. Lett. 106, 151103 (2015).

    Article  ADS  Google Scholar 

  22. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  Google Scholar 

  23. Ni, X., Emani, N. K. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 1214686 (2012).

    Article  Google Scholar 

  24. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  25. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  26. High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).

    Article  ADS  Google Scholar 

  27. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  ADS  Google Scholar 

  28. Chong, K. E. et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369–5374 (2015).

    Article  ADS  Google Scholar 

  29. Vassant, S. et al. Epsilon-near-zero mode for active optoelectronic devices. Phys. Rev. Lett. 109, 237401 (2012).

    Article  ADS  Google Scholar 

  30. Campione, S., Brener, I. & Marquier, F. Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B 91, 121408 (2015).

    Article  ADS  Google Scholar 

  31. Campione, S., Wendt, J. R., Keeler, G. A. & Luk, T. S. Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers. ACS Photon-. 3, 293–297 (2016).

    Article  Google Scholar 

  32. Schulz, S. A. et al. Optical response of dipole antennas on an epsilon-near-zero substrate. Phys. Rev. A 93, 063846 (2016).

    Article  ADS  Google Scholar 

  33. Sheik-Bahae, M., Said, A. A., Wei, T.-H., Hagan, D. J. & Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990).

    Article  ADS  Google Scholar 

  34. Luk, T. S. et al. Directional perfect absorption using deep subwavelength low-permittivity films. Phys. Rev. B 90, 085411 (2014).

    Article  ADS  Google Scholar 

  35. Khurgin, J. B., Sun, G., Chen, W. T., Tsai, W.-Y. & Tsai, D. P. Ultrafast thermal nonlinearity. Sci. Rep. 5, 17899, https://doi.org/10.1038/srep17899 (2015).

    Article  ADS  Google Scholar 

  36. Sachet, E. et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nat. Mater. 14, 414–420 (2015).

    Article  ADS  Google Scholar 

  37. Kim, J. et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica 3, 339–346 (2016).

    Article  Google Scholar 

  38. Hadad, Y., Sounas, D. & Alu, A. Space–time gradient metasurfaces. Phys. Rev. B 92, 100304 (2015).

    Article  ADS  Google Scholar 

  39. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon-. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  40. Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

    Article  Google Scholar 

  41. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  Google Scholar 

  42. Boyd, R. W. Nonlinear Optics (Academic Press, Cambridge, MA, 2003).

    Google Scholar 

  43. Campione, S., Kim, I., de Ceglia, D., Keeler, G. A. & Luk, T. S. Experimental verification of epsilon-near-zero plasmon polariton modes in degenerately doped semiconductor nanolayers. Opt. Express 24, 18782–18789 (2016).

    Article  ADS  Google Scholar 

  44. Liu, X. et al. Quantification and impact of nonparabolicity of the conduction band of indium tin oxide on its plasmonic properties. Appl. Phys. Lett. 105, 181117 (2014).

    Article  ADS  Google Scholar 

  45. Kane, E. O. Band structure of indium antimonide. J. Phys. Chem. Solids 1, 249–261 (1957).

    Article  ADS  Google Scholar 

  46. Schulz, S. A. et al. Quantifying the impact of proximity error correction on plasmonic metasurfaces [invited]. Opt. Mater. Express 5, 2798–2803 (2015).

    Article  Google Scholar 

  47. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Canada Excellence Research Chairs Program, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Canada Foundation for Innovation (CFI). I.D.L. acknowledges financial support from CONACyT (Ciencia Básica) grant no. 286150. M.Z.A. thanks S. Choudhary for discussions on the linewidth broadening mechanisms in a plasmonic system.

Author information

Authors and Affiliations

Authors

Contributions

I.D.L. conceived the idea and initiated the study. I.D.L., S.A.S., M.Z.A. and J.U. designed the sample. S.A.S. performed the FDTD simulations. S.A.S. and J.U. fabricated the sample. M.Z.A. performed all experiments and the corresponding data analysis, developed the numerical model to describe the nonlinear response, and wrote the first draft. All authors contributed to finalizing the manuscript. I.D.L. and R.W.B. supervised the project.

Corresponding author

Correspondence to Israel De Leon.

Ethics declarations

Competing interests

R.W.B. is the co-founder and Chief Technology Officer of KBN Optics, Pittsford NY.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supporting theory and data; Supplementary Figures 1–10; Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.Z., Schulz, S.A., Upham, J. et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nature Photon 12, 79–83 (2018). https://doi.org/10.1038/s41566-017-0089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0089-9

  • Springer Nature Limited

This article is cited by

Navigation