Skip to main content

All-Dielectric Nonlinear Meta-Optics

  • Conference paper
  • First Online:
Light-Matter Interactions Towards the Nanoscale

Abstract

Optical metasurfaces are arrays of coupled optical antennas, with sub-wavelength size and separation. In the past two decades, their optical properties have been mostly demonstrated with either metallic or amorphous dielectric nanostructures. Since the former suffer from strong dissipation near the plasmon resonance and they are both only weakly nonlinear, AlGaAs nanoparticles have recently attracted a great deal of interest because of their huge non-resonant χ(2) nonlinearity. In this chapter, besides briefly recalling the bases of nonlinear optics, we will first describe the main modeling approaches for linear and nonlinear nano-optics. Finally we will review the recent demonstrations of AlGaAs-on-insulator nanoantennas and metasurfaces as efficient second harmonic emitters, with a focus on their potential for both beam shaping of classical harmonic fields and the generation of engineered quantum photon states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khurgin JB (2015) How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnol 10:2–6

    Article  ADS  Google Scholar 

  2. Furube A, Hashimoto S (2017) Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication. NPG Asia Mater 9:e454

    Article  Google Scholar 

  3. Jauffred L, Samadi A, Klingberg H, Bendix PM, Oddershede LB (2019) Plasmonic heating of nanostructures. Chem Rev 119:8087–8130

    Article  Google Scholar 

  4. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187

    Article  ADS  Google Scholar 

  5. Pendry JB, Holden AJ, Robbins DJ, Stewar WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47:2075–2084

    Article  ADS  Google Scholar 

  6. Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang J, Lukyanchukl B (2012) Magnetic light. Sci Rep 2:1–6

    Article  Google Scholar 

  7. Carletti L, Locatelli A, Stepanenko O, Leo G, De Angelis C (2015) Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas. Opt Express 23:26544–26550

    Article  ADS  Google Scholar 

  8. Boyd R (2008) Nonlinear optics, 3rd edn. Academic

    Google Scholar 

  9. Caspani L, Xiong C, Eggleton BJ, Bajoni D, Liscidini M, Galli M, Morandotti R, Moss DJ (2017) Integrated sources of photon quantum states based on nonlinear optics. Light Sci Appl 6:e17100–e17112

    Article  ADS  Google Scholar 

  10. Fiore A, Janz S, Delobel L, Van Der Meer P, Bravetti P, Berger V, Rosencher E, Nagle J (1998) Second-harmonic generation at λ=1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching. Appl Phys Lett 72:2942–2944

    Article  ADS  Google Scholar 

  11. Ducci S, Lanco L, Berger V, De Rossi A, Ortiz V, Calligaro M (2004) Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides. Appl Phys Lett 84:2974–2976

    Article  ADS  Google Scholar 

  12. Vodopyanov KL, Levi O, Kuo PS, Pinguet TJ, Harris JS, Fejer MM, Gerard B, Becouara L, Lallier E (2004) Optical parametric oscillation in quasi-phasematched GaAs. OSA Trend Opt Photonics Ser 96 A:459–461

    Google Scholar 

  13. Grosges T, Vial A, Barchiesi D (2005) Models of near-field spectroscopic studies : comparison between finite-element and finite-difference methods. Opt Express 13:85416–85422

    Article  Google Scholar 

  14. Grahn P, Shevchenko A, Kaivola M (2012) Electromagnetic multipole theory for optical nanomaterials. New J Phys 14:1–11

    Article  MATH  Google Scholar 

  15. Gehrsitz S, Reinhart FK, Gourgon C, Herres N, Vonlanthen A, Sigg H (2000) The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling. J Appl Phys 87:7825–7837

    Article  ADS  Google Scholar 

  16. Ohashi M, Kondo T, Ito R, Fukatsu S, Shiraki Y, Kumata K, Kano SS (1993) Determination of quadratic nonlinear optical coefficient of AlxGa1-xAs system by the method of reflected second harmonics. J Appl Phys 74:596–601

    Article  ADS  Google Scholar 

  17. Gili VF, Carletti L, Locatelli A, Rocco D, Finazzi M, Ghirardini L, Favero I, Gomez C, Lemaître A, Celebrano M, De Angelis C, Leo G (2016) Monolithic AlGaAs second-harmonic nanoantennas. Opt Express 24:15965–15971

    Article  ADS  Google Scholar 

  18. Camacho-Morales R, Rahmani M, Kruk S, Wang L, Xu L, Smirnova DA, Solntsev AS, Miroshnichenko A, Tan HH, Karouta F, Naureen S, Vora K, Carletti L, De Angelis C, Jagadish C, Kivshar YS, Neshev DN (2016) Nonlinear generation of vector beams from AlGaAs Nanoantennas. Nano Lett 16:7191–7197

    Article  ADS  Google Scholar 

  19. Liu S, Sinclair MB, Saravi S, Keeler GA, Yang Y, Reno J, Peake GM, Setzpfandt F, Staude I, Pertsch T, Brener I (2016) Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric Metasurfaces. Nano Lett 16:5426–5432

    Article  ADS  Google Scholar 

  20. Lalanne P, Yan W, Vynck K, Sauvan C, Hugonin JP (2018) Light interaction with photonic and Plasmonic resonances. Laser Photonics Rev 12:1–38

    Article  Google Scholar 

  21. Bai Q, Perrin M, Sauvan C, Hugonin J-P, Lalanne P (2013) Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure. Opt Express 21:27371–27382

    Article  ADS  Google Scholar 

  22. Sauvan C, Hugonin JP, Maksymov IS, Lalanne P (2013) Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys Rev Lett 110:1–5

    Article  Google Scholar 

  23. Yan W, Faggiani R, Lalanne P (2018) Rigorous modal analysis of plasmonic nanoresonators. Phys Rev B 97:1–9

    Google Scholar 

  24. Wu T, Baron A, Lalanne P, Vynck K (2020) Intrinsic multipolar contents of nanoresonators for tailored scattering. Phys Rev A 011803:1–5

    Google Scholar 

  25. Gigli C, Wu T, Marino G, Borne A, Leo G, Lalanne P (2020) Quasinormal-mode non-Hermitian modeling and design in nonlinear Nano-optics. ACS Photonics 7:1197–1205

    Article  Google Scholar 

  26. QNM solvers and toolboxes are freely available online at https://www.lp2n.institutoptique.fr/light-complex-nanostructures

  27. Celebrano M, Wu X, Baselli M, Großmann S, Biagioni P, Locatelli A, De Angelis C, Cerullo G, Osellame R, Hecht B, Duò L, Ciccacci F, Finazzi M (2015) Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat Nanotechnol 10:412–417

    Article  ADS  Google Scholar 

  28. Ghirardini L, Carletti L, Gili V, Pellegrini G, Duò L, Finazzi M, Rocco D, Locatelli A, De Angelis C, Favero I, Ravaro M, Leo G, Lemaître A, Celebrano M (2017) Polarization properties of second-harmonic generation in AlGaAs optical nanoantennas. Opt Lett 42:559–562

    Article  ADS  Google Scholar 

  29. Carletti L, Rocco D, Locatelli A, De Angelis C, Gili VF, Ravaro M, Favero I, Leo G, Finazzi M, Ghirardini L, Celebrano M, Marino G, Zayats AV (2017) Controlling second-harmonic generation at the nanoscale with monolithic AlGaAs-on-AlOx antennas. Nanotechnology 28

    Google Scholar 

  30. Carletti L, Marino G, Ghirardini L, Gili VF, Rocco D, Favero I, Locatelli A, Zayats AV, Celebrano M, Finazzi M, Giuseppe L, de Angelis C, Neshev DN (2018) Nonlinear goniometry by second harmonic generation in AlGaAs nanoantennas. ACS Photonics 5:4386–4392

    Article  Google Scholar 

  31. Sautter JD, Xu L, Miroshnichenko AE, Lysevych M, Volkovskaya I, Smirnova DA, Camacho-Morales R, Zangeneh Kamali K, Karouta F, Vora K, Tan HH, Kauranen M, Staude I, Jagadish C, Neshev DN, Rahmani M (2019) Tailoring second-harmonic emission from (111)-GaAs nanoantennas. Nano Lett 19:3905–3911

    Article  ADS  Google Scholar 

  32. Xu L, Saerens G, Timofeeva M, Smirnova DA, Volkovskaya I, Lysevych M, Camacho-morales R, Cai M, Kamali KZ, Huang L, Karouta F, Tan HH, Jagadish C, Miroshnichenko AE, Grange R, Neshev DN, Rahmani M (2020a) Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas. ACS Nano 14:1379–1389

    Article  Google Scholar 

  33. Rocco D, Gigli C, Carletti L, Marino G, Vincenti MA, Leo G, De Angelis C (2020) Vertical Second Harmonic Generation in asymmetric dielectric nanoantennas. IEEE Photonics J 12:1–7

    Google Scholar 

  34. Ghirardini L, Marino G, Gili VF, Favero I, Rocco D, Carletti L, Locatelli A, de Angelis C, Finazzi M, Celebrano M, Neshev DN, Giuseppe L (2018) Shaping the nonlinear emission pattern of a dielectric nanoantenna by integrated holographic gratings. Nano Lett 18:6750–6755

    Article  ADS  Google Scholar 

  35. Rodríguez-fortuño FJ, Marino G, Ginzburg P, O’Connor D, Martínez A, Wurtz GA, Zayats AV (2013) Electromagnetic guided modes. Science 328:328–331

    Article  ADS  Google Scholar 

  36. Müller M, Bounouar S, Jöns KD, Glässl M, Michler P (2014) On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics 8:224–228

    Article  ADS  Google Scholar 

  37. Versteegh MAM, Reimer ME, Jöns KD, Dalacu D, Poole PJ, Gulinatti A, Giudice A, Zwiller V (2014) Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat Commun 5:5298

    Article  ADS  Google Scholar 

  38. Kwiat PG, Mattle K, Weinfurter H, Zeilinger A, Sergienko AV, Shih Y (1995) New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett 75:4337–4341

    Article  ADS  Google Scholar 

  39. Bayraktar Ö, Swillo M, Canalias C, Björk G (2016) Quantum-polarization state tomography. Phys Rev A 94:1–5

    Article  MathSciNet  Google Scholar 

  40. Wang K, Titchener JG, Kruk SS, Xu L, Chung H, Parry M, Kravchenko II, Chen Y, Solntsev AS, Kivshar YS, Neshev DN, Sukhorukov AA (2018) Quantum metasurface for multiphoton interference and state reconstruction. Science 1108:1104–1108

    Article  ADS  Google Scholar 

  41. Sipahigil A, Evans RE, Sukachev DD, Burek MJ, Borregaard J, Bhaskar MK, Nguyen CT, Pacheco JL, Atikian HA, Meuwly C, Camacho RM, Jelezko F, Bielejec E, Park H, Lončar M, Lukin MD (2016) An integrated diamond nanophotonics platform for quantum-optical networks. Science 354:847–850

    Article  ADS  Google Scholar 

  42. Senellart P, Solomon G, White A (2017) High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol 12:1026–1039

    Article  ADS  Google Scholar 

  43. Somaschi N, Giesz V, De Santis L, Loredo JC, Almeida MP, Hornecker G, Portalupi SL, Grange T, Antón C, Demory J, Gómez C, Sagnes I, Lanzillotti-Kimura ND, Lemaítre A, Auffeves A, White AG, Lanco L, Senellart P (2016) Near-optimal single-photon sources in the solid state. Nat Photonics 10:340–345

    Article  ADS  Google Scholar 

  44. Aharonovich I, Englund D, Toth M (2016) Solid-state single-photon emitters. Nat Photonics 10:631–641

    Article  ADS  Google Scholar 

  45. Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I (2016) Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol 11:37–41

    Article  ADS  Google Scholar 

  46. Marino G, Solntsev AS, Xu L, Gili VF, Carletti L, Poddubny AN, Rahmani M, Smirnova DA, Chen H, Lemaître A, Zhang G, Zayats AV, De Angelis C, Leo G, Sukhorukov AA, Neshev DN (2019a) Spontaneous photon-pair generation from a dielectric nanoantenna. Optica 6:1416

    Article  ADS  Google Scholar 

  47. Guo X, Zou CL, Schuck C, Jung H, Cheng R, Tang HX (2017) Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci Appl 6:1–8

    Google Scholar 

  48. Poddubny AN, Iorsh IV, Sukhorukov AA (2016) Generation of photon-Plasmon quantum states in nonlinear hyperbolic metamaterials. Phys Rev Lett 117:1–6

    Article  Google Scholar 

  49. Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, Segev M (2018) Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361:1101–1104

    Article  ADS  Google Scholar 

  50. Marino G, Gigli C, Rocco D, Lemaître A, Favero I, De Angelis C, Leo G, De Angelis C, Leo G (2019b) Zero-order second harmonic generation from AlGaAs-on-insulator metasurfaces. ACS Photonics 6:1226–1231

    Article  Google Scholar 

  51. Rocco D, Gili VF, Ghirardini L, Carletti L, Favero I, Locatelli A, Marino G, Neshev DN, Celebrano M, Finazzi M, Leo G, De Angelis C (2018) Tuning the second-harmonic generation in AlGaAs nanodimers via non-radiative state optimization [invited]. Photonics Res 6:B6

    Article  Google Scholar 

  52. Albella P, Poyli MA, Schmidt MK, Maier SA, Moreno F, Sáenz JJ, Aizpurua J (2013) Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers. J Phys Chem C 117:13573–13584

    Article  Google Scholar 

  53. Zywietz U, Schmidt MK, Evlyukhin AB, Reinhardt C, Aizpurua J, Chichkov BN (2015) Electromagnetic resonances of silicon nanoparticle dimers in the visible. ACS Photonics 2:913–920

    Article  Google Scholar 

  54. Bakker RM, Permyakov D, Yu YF, Markovich D, Paniagua-Domínguez R, Gonzaga L, Samusev A, Kivshar Y, Lukyanchuk B, Kuznetsov AI (2015) Magnetic and electric hotspots with silicon nanodimers. Nano Lett 15:2137–2142

    Article  ADS  Google Scholar 

  55. Gigli C, Marino G, Suffit S, Patriarche G, Beaudoin G, Pantzas K, Sagnes I, Favero I, Leo G (2019) Polarization- and diffraction-controlled second-harmonic generation from semiconductor metasurfaces. J Opt Soc Am B 36:E55–E63

    Article  ADS  Google Scholar 

  56. FJF L, Fedotova AN, Liu S, Keeler GA, Peake GM, Saravi S, Shcherbakov MR, Burger S, Fedyanin AA, Brener I, Pertsch T, Setzpfandt F, Staude I (2018) Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces. ACS Photonics 5:1786–1793

    Article  Google Scholar 

  57. Rybin MV, Filonov DS, Samusev KB, Belov PA, Kivshar YS, Limonov MF (2015) Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat Commun 6:6–11

    Article  Google Scholar 

  58. De Angelis C, Leo G, Neshev DN (2020) Nonlinear meta-optics, 1st edn. CRC Press

    Book  Google Scholar 

  59. Li S, Xu X, Veetil RM, Valuckas V, Kuznetsov AI (2019) Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364(6445):1087–1090

    Article  ADS  Google Scholar 

  60. Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraji-Dana MS, Faraon A (2018) MEMS-tunable dielectric metasurface lens. Nat Commun 9

    Google Scholar 

  61. Smirnova D, Leykam D, Chong Y, Kivshar Y (2020) Nonlinear topological photonics. Appl Phys Rev 7

    Google Scholar 

  62. Xu L, Rahmani M, Ma Y, Smirnova DA, Kamali KZ, Deng F, Chiang YK, Huang L, Zhang H, Gould S, Neshev DN, Miroshnichenko AE (2020) Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach. Adv Photonics 2:1

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted with too many colleagues to cite them all, but special thanks are warmly addressed to Philippe Lalanne, Costantino De Angelis, Dragomir Neshev and Jean-Michel Gérard, for insightful discussions and inspiration.

G.L. acknowledges financial support from ANR projects NOMOS (ANR-18-CE24-0026) and Nanopair (ANR-18-CE92-0043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Leo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marino, G., Gigli, C., Gili, V.F., Leo, G. (2022). All-Dielectric Nonlinear Meta-Optics. In: Cesaria, M., Calà Lesina, A., Collins, J. (eds) Light-Matter Interactions Towards the Nanoscale. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2138-5_6

Download citation

Publish with us

Policies and ethics