Skip to main content
Log in

Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor

  • Letter
  • Published:

From Nature Photonics

View current issue Submit your manuscript

Abstract

Hybrid organic–inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1,2,3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of ~17 kW cm–2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Gain dynamics of MAPbI3 at low temperature.
Fig. 2: Continuous-wave lasing characterization.
Fig. 3: Continuous-wave lasing dynamics.
Fig. 4: Pump-induced MAPbI3 phase evolution.

Similar content being viewed by others

References

  1. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    Article  ADS  Google Scholar 

  2. Veldhuis, S. A. et al. Perovskite materials for light‐emitting diodes and lasers. Adv. Mater. 28, 6804–6834 (2016).

    Article  Google Scholar 

  3. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    Article  ADS  Google Scholar 

  4. Jia, Y. et al. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett. 16, 4624–4629 (2016).

    Article  ADS  Google Scholar 

  5. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Article  Google Scholar 

  6. Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390–406 (2012).

    Article  Google Scholar 

  7. Giebink, N. C. & Forrest, S. R. Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Phys. Rev. B 79, 073302 (2009).

    Article  ADS  Google Scholar 

  8. Zhang, Y. & Forrest, S. R. Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 84, 241301 (2011).

    Article  ADS  Google Scholar 

  9. Sandanayaka, A. S. D. et al. Toward continuous-wave operation of organic semiconductor lasers. Sci. Adv. 3, e1602570 (2017).

    Article  ADS  Google Scholar 

  10. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  ADS  Google Scholar 

  11. Grim, J. Q. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotech. 9, 891–895 (2014).

    Article  ADS  Google Scholar 

  12. Yang, Z., Pelton, M., Fedin, I., Talapin, D. V. & Waks, E. A room temperature continuous-wave nanolaser using colloidal quantum wells. Nat. Commun. 8, 143 (2017).

    Article  ADS  Google Scholar 

  13. Blood, P. Quantum Confined Laser Devices: Optical Gain and Recombination in Semiconductors (Oxford Univ. Press, Oxford, 2015).

  14. Kozlov, V. G. et al. Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films. J. Appl. Phys. 84, 4096–4108 (1998).

    Article  ADS  Google Scholar 

  15. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–108 (2017).

    Article  ADS  Google Scholar 

  16. Kogelnik, H. & Shank, C. V. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972).

    Article  ADS  Google Scholar 

  17. Andrew, P., Turnbull, G. A., Samuel, I. D. W. & Barnes, W. L. Photonic band structure and emission characteristics of a metal-backed polymeric distributed feedback laser. Appl. Phys. Lett. 81, 954–956 (2002).

    Article  ADS  Google Scholar 

  18. Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Mater. 2, 081513 (2014).

    Article  ADS  Google Scholar 

  19. Osherov, A. et al. The impact of phase retention on the structural and optoelectronic properties of metal halide perovskites. Adv. Mater. 28, 10757–10763 (2016).

    Article  Google Scholar 

  20. Panzer, F. et al. Reversible laser-induced amplified spontaneous emission from coexisting tetragonal and orthorhombic phases in hybrid lead halide perovskites. Adv. Opt. Mater. 4, 917–928 (2016).

    Article  Google Scholar 

  21. Kong, W. et al. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 16405–16411 (2015).

    Article  Google Scholar 

  22. Dobrovolsky, A., Merdasa, A., Unger, E. L., Yartsev, A. & Scheblykin, I. G. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites. Nat. Commun. 8, 34 (2017).

    Article  ADS  Google Scholar 

  23. Neutzner, S., Kandada, A. R. S., Lanzani, G. & Petrozza, A. A dual-phase architecture for efficient amplified spontaneous emission in lead iodide perovskites. J. Mater. Chem. C 4, 4630–4633 (2016).

    Article  Google Scholar 

  24. Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Sol. 53, 935–939 (1992).

    Article  ADS  Google Scholar 

  25. Chen, T. et al. Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite. Phys. Chem. Chem. Phys. 17, 31278–31286 (2015).

    Article  Google Scholar 

  26. Wang, T. et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci. 10, 509–515 (2017).

    Article  Google Scholar 

  27. Marongiu, D. et al. Self-assembled lead halide perovskite nanocrystals in a perovskite matrix. ACS Energy Lett. 2, 769–775 (2017).

    Article  Google Scholar 

  28. Byun, J. et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016).

    Article  Google Scholar 

  29. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotech. 11, 872–877 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Air Force Office of Scientific Research Young Investigator Program under award no. FA-9550-14-1-0301 and by the National Science Foundation under grant no. DMR-1654077. R.A.K. and B.P.R. acknowledge support from a DARPA Young Faculty Award, #D15AP00093 and ONR Young Investigator Program (award #N00014-17-1-2005).

Author information

Authors and Affiliations

Authors

Contributions

Y.J. fabricated the gratings, carried out the laser measurements and performed the data analysis. R.A.K. developed the perovskite processing and deposition method and A.J.G. carried out the transient absorption measurements. B.P.R. and N.C.G. supervised the work. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Noel C. Giebink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary figures 1-7

Supplementary Video

Video of continuous-wave lasing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Kerner, R.A., Grede, A.J. et al. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nature Photon 11, 784–788 (2017). https://doi.org/10.1038/s41566-017-0047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0047-6

  • Springer Nature Limited

This article is cited by

Navigation