Skip to main content
Log in

Long lifetimes and effective isolation of ions in optical and electrostatic traps

  • Letter
  • Published:

From Nature Photonics

View current issue Submit your manuscript

Abstract

Long trapping times, as well as low heating and decoherence rates, essentially isolating individual particles from the environment, are crucial ingredients for controlling these particles on the quantum level1. Here, we demonstrate that optical trapping and isolation of ions can be performed on a level comparable to neutral atoms, boosting their lifetime by three orders of magnitude compared to previous work2,3, and measure an upper bound of the total heating rate. The achieved isolation from the environment opens a path to a novel regime of ultracold interactions of ions and atoms at previously inaccessible collision energies4,5,6 and may permit a novel class of experimental quantum simulations with ions and atoms in a variety of versatile optical trapping geometries7, for example, bichromatic traps or higher-dimensional optical lattices8,9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic of the experimental set-up.
Fig. 2: Lifetime of a single ion in the vis trap.
Fig. 3: Ion lifetime in the NIR trap.
Fig. 4: Heating rate measurement of an ion in an optical dipole trap at ambient fields.

Similar content being viewed by others

References

  1. Wineland, D. J. Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103–1114 (2013).

    Article  ADS  Google Scholar 

  2. Schneider, C., Enderlein, M., Huber, T. & Schaetz, T. Optical trapping of an ion. Nat. Photon. 4, 772–775 (2010).

    Article  ADS  Google Scholar 

  3. Huber, T., Lambrecht, A., Schmidt, J., Karpa, L. & Schaetz, T. A far-off-resonance optical trap for a Ba+ ion. Nat. Commun. 5, 5587 (2014).

    Article  ADS  Google Scholar 

  4. Cetina, M., Grier, A. T. & Vuletić, V. Micromotion-induced limit to atom–ion sympathetic cooling in Paul traps. Phys. Rev. Lett. 109, 253201 (2012).

    Article  ADS  Google Scholar 

  5. Krükow, A. et al. Energy scaling of cold atom–atom–ion three-body recombination. Phys. Rev. Lett. 116, 193201 (2016).

    Article  ADS  Google Scholar 

  6. Meir, Z. et al. Dynamics of a ground-state cooled ion colliding with ultracold atoms. Phys. Rev. Lett. 117, 243401 (2016).

    Article  ADS  Google Scholar 

  7. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  Google Scholar 

  8. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  9. Schmied, R., Roscilde, T., Murg, V., Porras, D. & Cirac, J. I. Quantum phases of trapped ions in an optical lattice. New J. Phys. 10, 045017 (2008).

    Article  ADS  Google Scholar 

  10. Schneider, C., Porras, D. & Schaetz, T. Experimental quantum simulations of many-body physics with trapped ions. Rep. Prog. Phys. 75, 024401 (2012).

    Article  ADS  Google Scholar 

  11. Tomza, M., Koch, C. P. & Moszynski, R. Cold interactions between anYb+ ion and a Li atom: prospects for sympathetic cooling, radiative association, and Feshbach resonances. Phys. Rev. A 91, 042706 (2015).

    Article  ADS  Google Scholar 

  12. Krych, M., Skomorowski, W., Pawłowski, F., Moszynski, R. & Idziaszek, Z. Sympathetic cooling of the Ba+ ion by collisions with ultracold Rb atoms: theoretical prospects. Phys. Rev. A 83, 032723 (2011).

    Article  ADS  Google Scholar 

  13. Côté, R., Kharchenko, V. & Lukin, M. D. Mesoscopic molecular ions in Bose–Einstein condensates. Phys. Rev. Lett. 89, 093001 (2002).

    Article  ADS  Google Scholar 

  14. Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009).

    Article  ADS  Google Scholar 

  15. Zipkes, C., Palzer, S., Sias, C. & Köhl, M. A trapped single ion inside a Bose–Einstein condensate. Nature 464, 388–391 (2010).

    Article  ADS  Google Scholar 

  16. Krych, M. & Idziaszek, Z. Description of ion motion in a Paul trap immersed in a cold atomic gas. Phys. Rev. A 91, 023430 (2015).

    Article  ADS  Google Scholar 

  17. Nguyên, L. H., Kalev, A., Barrett, M. D. & Englert, B.-G. Micromotion in trapped atom–ion systems. Phys. Rev. A 85, 052718 (2012).

    Article  ADS  Google Scholar 

  18. Linnet, R. B., Leroux, I. D., Marciante, M., Dantan, A. & Drewsen, M. Pinning an ion with an intracavity optical lattice. Phys. Rev. Lett. 109, 233005 (2012).

    Article  ADS  Google Scholar 

  19. Karpa, L., Bylinskii, A., Gangloff, D., Cetina, M. & Vuletić, V. Suppression of ion transport due to long-lived subwavelength localization by an optical lattice. Phys. Rev. Lett. 111, 163002 (2013).

    Article  ADS  Google Scholar 

  20. Bylinskii, A., Gangloff, D. & Vuletić, V. Tuning friction atom-by-atom in an ion-crystal simulator. Science 348, 1115–1118 (2015).

    Article  ADS  Google Scholar 

  21. Enderlein, M., Huber, T., Schneider, C. & Schaetz, T. Single ions trapped in a one-dimensional optical lattice. Phys. Rev. Lett. 109, 233004 (2012).

    Article  ADS  Google Scholar 

  22. Nagourney, W., Sandberg, J. & Dehmelt, H. Shelved optical electron amplifier: observation of quantum jumps. Phys. Rev. Lett. 56, 2797–2799 (1986).

    Article  ADS  Google Scholar 

  23. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article  ADS  Google Scholar 

  24. Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2,041014 (2012).

    Google Scholar 

  25. Xia, T. et al. Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. Phys. Rev. Lett. 114, 100503 (2015).

    Article  ADS  Google Scholar 

  26. Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article  ADS  Google Scholar 

  27. Schneider, C., Enderlein, M., Huber, T., Dürr, S. & Schaetz, T. Influence of static electric fields on an optical ion trap. Phys. Rev. A 85,013422 (2012).

    Article  ADS  Google Scholar 

  28. Cirac, J. I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000).

    Article  ADS  Google Scholar 

  29. Mielenz, M. et al. Arrays of individually controlled ions suitable for two-dimensional quantum simulations. Nat. Commun. 7, 11839 (2016).

    Article  ADS  Google Scholar 

  30. Leschhorn, G., Hasegawa, T. & Schaetz, T. Efficient photo-ionization for barium ion trapping using a dipole-allowed resonant two-photon transition. Appl. Phys. B 108, 159–165 (2012).

    Article  ADS  Google Scholar 

  31. Siverns, J. D., Simkins, L. R., Weidt, S. & Hensinger, W. K. On the application of radio frequency voltages to ion traps via helical resonators. Appl. Phys. B 107,921–934 (2012).

    Article  ADS  Google Scholar 

  32. Kalis, H. et al. Motional-mode analysis of trapped ions. Phys. Rev. A 94, 023401 (2016).

    Article  ADS  Google Scholar 

  33. Berkeland, D., Miller, J., Bergquist, J., Itano, W. & Wineland, D. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025 (1998).

    Article  ADS  Google Scholar 

  34. Schaetz, T. Trapping ions and atoms optically. J. Phys. B 50, 102001 (2017).

    Article  ADS  Google Scholar 

  35. NIST atomic spectra database http://www.nist.gov/pml/data/asd.cfm (NIST, 2016).

  36. Grimm, R., Weidemüller, M. & Ovchinnikov, Y. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys 42,95–170 (2000).

    Article  ADS  Google Scholar 

  37. Wilson, E. B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22,209–212 (1927).

    Article  Google Scholar 

  38. Cormick, C., Schaetz, T. & Morigi, G. Trapping ions with lasers. New J. Phys. 13, 043019 (2011).

    Article  ADS  Google Scholar 

  39. Knünz, S. et al. Sub-millikelvin spatial thermometry of a single Doppler-cooled ion in a Paul trap. Phys. Rev. A 85, 023427 (2012).

    Article  ADS  Google Scholar 

  40. Schmid, S., Härter, A. & Hecker Denschlag, J. Dynamics of a cold trapped ion in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 133202 (2010).

    Article  ADS  Google Scholar 

  41. Rouse, I. & Willitsch, S. Superstatistical energy distributions of an ion in an ultracold buffer gas. Phys. Rev. Lett. 118, 143401 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Denter for technical support. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 648330). A.L., J.S., P.W. and M.D. acknowledge support from the DFG within the GRK 2079/1 programme. P.W. acknowledges support from the Studienstiftung des deutschen Volkes. L.K. acknowledges financial support from Marie Curie Actions.

Author information

Authors and Affiliations

Authors

Contributions

T.S. conceived the experiment. A.L., J.S. and L.K. contributed equally to the design, construction, carrying out of the experiments, discussion of the results and analysis of the data. All authors contributed to discussing the results and writing the manuscript.

Corresponding author

Correspondence to Leon Karpa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambrecht, A., Schmidt, J., Weckesser, P. et al. Long lifetimes and effective isolation of ions in optical and electrostatic traps. Nature Photon 11, 704–707 (2017). https://doi.org/10.1038/s41566-017-0030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0030-2

  • Springer Nature Limited

This article is cited by

Navigation