Skip to main content
Log in

Gate-based high fidelity spin readout in a CMOS device

  • Letter
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

Abstract

The engineering of a compact qubit unit cell that embeds all quantum functionalities is mandatory for large-scale integration. In addition, these functionalities should present the lowest error rate possible to successfully implement quantum error correction protocols1. Electron spins in silicon quantum dots are particularly promising because of their high control fidelity2,3,4,5 and their potential compatibility with complementary metal-oxide-semiconductor industrial platforms6,7. However, an efficient and scalable spin readout scheme is still missing. Here we demonstrate a high fidelity and robust spin readout based on gate reflectometry in a complementary metal-oxide-semiconductor device that consists of a qubit dot and an ancillary dot coupled to an electron reservoir. This scalable method allows us to read out a spin in a single-shot manner with an average fidelity above 98% for a 0.5 ms integration time. To achieve such a fidelity, we combine radio-frequency gate reflectometry with a latched spin blockade mechanism that requires electron exchange between the ancillary dot and the reservoir. We show that the demonstrated high readout fidelity is fully preserved up to 0.5 K. This result holds particular relevance for the future cointegration of spin qubits and classical control electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: A CMOS device probed by gate-based RF reflectometry.
Fig. 2: Single-shot spin readout.
Fig. 3: Spin readout error analysis.
Fig. 4: Temperature dependence of the singlet readout fidelity (FS).

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Fowler, A. G. Two-dimensional color-code quantum computation. Phys. Rev. A 83, 042310 (2011).

    Article  Google Scholar 

  2. Veldhorst, M., Eenink, H. G. J., Yang, C. H. & Dzurak, A. S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 8, 1766 (2017).

    Article  CAS  Google Scholar 

  3. Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018).

    Article  CAS  Google Scholar 

  4. Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    Article  CAS  Google Scholar 

  5. Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9. Nat. Nanotechnol. 13, 102–106 (2018).

    Article  CAS  Google Scholar 

  6. Maurand, R. et al. A CMOS silicon spin qubit. Nat. Commun. 7, 13575 (2016).

    Article  CAS  Google Scholar 

  7. Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).

    Article  Google Scholar 

  8. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324.

  9. Thalineau, R. et al. A few-electron quadruple quantum dot in a closed loop. Appl. Phys. Lett. 101, 103102 (2012).

    Article  Google Scholar 

  10. Flentje, H. et al. A linear triple quantum dot system in isolated configuration. Appl. Phys. Lett. 110, 233101 (2017).

    Article  Google Scholar 

  11. Mukhopadhyay, U., Dehollain, J. P., Reichl, C., Wegscheider, W. & Vandersypen, L. M. K. A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings. Appl. Phys. Lett. 112, 183505 (2018).

    Article  Google Scholar 

  12. Mortemousque, P. A. et al. Coherent control of individual electron spins in a two dimensional array of quantum dots. Preprint at https://arxiv.org/abs/1808.06180 (2018).

  13. Batude, P. et al. 3D Sequential integration: application-driven technological achievements and guidelines. In 2017 IEEE International Electron Devices Meeting 311 (IEEE, 2017).

  14. Hutin, L., De Franceschi, S., Meunier, T. & Vinet, M. Quantum device with spin qubits. US provisional patent 15967778 (2018).

  15. Larrieu, G. & Han, X.-L. Vertical nanowire array-based field effect transistors for ultimate scaling. Nanoscale 5, 2437–2441 (2013).

    Article  CAS  Google Scholar 

  16. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004).

    Article  CAS  Google Scholar 

  17. Ono, K., Austing, D., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  CAS  Google Scholar 

  18. Barthel, C., Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Rapid single-shot measurement of a singlet-triplet qubit. Phys. Rev. Lett. 103, 160503 (2009).

    Article  CAS  Google Scholar 

  19. Petersson, K. et al. Charge and spin state readout of a double quantum dot coupled to a resonator. Nano Lett. 10, 2789–2793 (2010).

    Article  CAS  Google Scholar 

  20. Colless, J. I. et al. Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. Phys. Rev. Lett. 110, 046805 (2013).

    Article  CAS  Google Scholar 

  21. Gonzalez-Zalba, M. F., Barraud, S., Ferguson, A. J. & Betz, A. C. Probing the limits of gate-based charge sensing. Nat. Commun. 6, 6084 (2015).

    Article  CAS  Google Scholar 

  22. Urdampilleta, M. et al. Charge dynamics and spin blockade in a hybrid double quantum dot in silicon. Phys. Rev. X 5, 031024 (2015).

    Google Scholar 

  23. House, M. G. et al. High-sensitivity charge detection with a single-lead quantum dot for scalable quantum computation. Phys. Rev. Appl. 6, 044016 (2016).

    Article  Google Scholar 

  24. Hofheinz, M. et al. Simple and controlled single electron transistor based on doping modulation in silicon nanowires. Appl. Phys. Lett. 89, 143504 (2006).

    Article  Google Scholar 

  25. Nakajima, T. et al. Robust single-shot spin measurement with 99.5% fidelity in a quantum dot array. Phys. Rev. Lett. 119, 017701 (2017).

    Article  Google Scholar 

  26. Fogarty, M. A. et al. Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet–triplet readout. Nat. Commun. 9, 4370 (2018).

    Article  CAS  Google Scholar 

  27. Harvey-Collard, P. et al. High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism. Phys. Rev. X 8, 021046 (2018).

    CAS  Google Scholar 

  28. Yang, C. et al. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun. 4, 2069 (2013).

    Article  CAS  Google Scholar 

  29. Macklin, C. et al. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    Article  CAS  Google Scholar 

  30. Maisi, V. F. et al. Spin-orbit coupling at the level of a single electron. Phys. Rev. Lett. 116, 136803 (2016).

    Article  CAS  Google Scholar 

  31. West, A. et al. Gate-based single-shot readout of spins in silicon. Nat. Nanotechnol. https://doi.org/10.1038/s41565-019-0400-7 (2019).

    Article  CAS  Google Scholar 

  32. Pakkiam, P. et al. Single-shot single-gate rf spin readout in silicon. Phys. Rev. X 8, 041032 (2018).

    Google Scholar 

  33. Beenakker, C. W. J. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646 (1991).

    Article  CAS  Google Scholar 

  34. Petit, L. et al. Spin lifetime and charge noise in hot silicon quantum dot qubits. Phys. Rev. Lett. 121, 076801 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge technical support from P. Perrier, H. Rodenas, E. Eyraud, D. Lepoittevin, I. Pheng, T. Crozes, L. Del Rey, D. Dufeu, J. Jarreau, C. Hoarau and C. Guttin. The European Union’s Horizon 2020 research and innovation programme supports M.U. through a Marie Sklodowska Curie fellowship (ODESI project). E.C. and C.S. acknowledge the Agence Nationale de la Recherche under the programme ‘Investissements d’avenir' (ANR-15-IDEX-02). D.J.N. and C.S. acknowledge the GreQuE doctoral programmes (grant agreement no. 754303). The device fabrication is funded through the Mosquito project (grant agreement no. 688539). This work is supported by the Agence Nationale de la Recherche through the CMOSQSPIN and the CODAQ projects (ANR-17-CE24-0009 and ANR-16-ACHN-0029).

Author information

Authors and Affiliations

Authors

Contributions

M.U. and T.M. conceived and designed the experiment. M.U., D.J.N., E.C. and T.M. performed the experiment and analysed the data. L.H., S.B. and M.V. designed the MOS devices and managed the fabrication process. M.U. and T.M. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Matias Urdampilleta or Tristan Meunier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Nanotechnology thanks Karl Petersson and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urdampilleta, M., Niegemann, D.J., Chanrion, E. et al. Gate-based high fidelity spin readout in a CMOS device. Nat. Nanotechnol. 14, 737–741 (2019). https://doi.org/10.1038/s41565-019-0443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0443-9

  • Springer Nature Limited

This article is cited by

Navigation