Skip to main content
Log in

Probing supermassive black hole binaries with pulsar timing

  • Comment
  • Published:

From Nature Astronomy

View current issue Submit your manuscript

The detection of a gravitational-wave background at nanohertz frequencies can tell us if and how supermassive black holes merge, and inform our knowledge of galaxy merger rates and supermassive black hole masses. All we have to do is time pulsars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Astrophysics manifesting in the gravitational-wave background strain spectrum.

S. Burke-Spolaor (West Virginia University)

Fig. 2: Time to detection of different models of the gravitational-wave background (GWB).

adapted from ref. 8, AAS

References

  1. Kormendy, J. & Ho, L. C. Ann. Rev. Astron. Astrophys. 51, 511–653 (2013).

    Article  ADS  Google Scholar 

  2. Begelman, M. C., Blandford, R. D. & Rees, M. J. Nature 287, 307–309 (1980).

    Article  ADS  Google Scholar 

  3. Milosavljevic, M. & Merritt, D. Astrophys. J. 596, 860–878 (2003).

    Article  ADS  Google Scholar 

  4. Khan, F. M., Holley-Bockelmann, K., Berczik, P. & Just, A. Astrophys. J. 773, 100–106 (2013).

    Article  ADS  Google Scholar 

  5. Sesana, A. Mon. Not. R. Astron. Soc. 433, L1–L5 (2013).

    Article  ADS  Google Scholar 

  6. Detweiler, S. Astrophys. J. 234, 1100–1104 (1979).

    Article  ADS  Google Scholar 

  7. Hellings, R. W. & Downs, G. S. Astrophys. J. Lett. 265, L39–L42 (1983).

    Article  ADS  Google Scholar 

  8. Taylor, S. R. et al. Astrophys. J. Lett. 819, L6 (2016).

    Article  ADS  Google Scholar 

  9. Phinney, E. S. Preprint at https://arxiv.org/abs/astro-ph/0108028 (2001).

  10. Arzoumanian, Z. et al. Astrophys. J. 821, 13 (2016).

    Article  ADS  Google Scholar 

  11. Ryu, T. et al. Mon. Not. R. Astron. Soc. 473, 3410–3433 (2018).

    Article  ADS  Google Scholar 

  12. Bonetti, M., Sesana, A., Barausse, E. & Haardt, F. Mon. Not. R. Astron. Soc. 477, 2599–2612 (2018).

    Article  ADS  Google Scholar 

  13. McWilliams, S. T., Ostriker, J. P. & Pretorius, F. Astrophys. J. 789, 156 (2014).

    Article  ADS  Google Scholar 

  14. Siemens, X., Ellis, J., Jenet, F. & Romano, J. D. Class. Quantum Grav. 30, 224015 (2013).

    Article  ADS  Google Scholar 

  15. Sesana, A., Shankar, F., Bernardi, M. & Sheth, R. K. Mon. Not. R. Astron. Soc. 463, L6–L11 (2016).

    Article  ADS  Google Scholar 

  16. Mingarelli, C. M. F. et al. Nat. Astron. 1, 886–892 (2017).

    Article  ADS  Google Scholar 

  17. Mingarelli, C. M. F., Sidery, T., Mandel, I. & Vecchio, A. Phys. Rev. D 88, 062005 (2013).

    Article  ADS  Google Scholar 

  18. Burke-Spolaor, S. Preprint at https://arxiv.org/abs/1511.07869 (2015).

Download references

Acknowledgements

I thank J. Lazio, D. Foreman-Mackey and X. Siemens for useful discussions. I also thank S. Taylor and S. Burke-Spolaor for permission to edit and reproduce some of their figures. The Flatiron Institute is funded by the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara M. F. Mingarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingarelli, C.M.F. Probing supermassive black hole binaries with pulsar timing. Nat Astron 3, 8–10 (2019). https://doi.org/10.1038/s41550-018-0666-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0666-y

  • Springer Nature Limited

This article is cited by

Navigation