Skip to main content

Advertisement

Log in

Single nucleotide polymorphisms to predict taxanes toxicities and effectiveness in cancer patients

  • Article
  • Published:
The Pharmacogenomics Journal Submit manuscript

Abstract

Taxanes are used in the treatment of several solid tumours. Adverse events (AEs) might be influenced by single nucleotide polymorphisms (SNPs) in genes encoding proteins responsible for pharmacokinetic and pharmacodynamic. In this prospective, monocentric, observational study we explored the effect of SNPs in the main genes involved in taxanes metabolism and transport, on toxicity and efficacy in 125 patients (pts) treated with paclitaxel, nab-paclitaxel, or docetaxel for neoplasms. There was no statistically significant association between the investigated SNPs and AEs. The heterozygous genotype of CYP3A4*22 showed a trend of association with skin reactions in pts treated with paclitaxel and nab-paclitaxel (RR = 6.92; 95% CI 0.47, 99.8; p = 0.0766). CYP2C8*3/*4 variant carriers showed a trend of association with overall AEs in pts treated with paclitaxel and nab-paclitaxel (RR = 1.28; 95% CI 0.96, 1.67; p = 0.0898). No statistically significant relationship with treatment efficacy was found. ABCB1 3435TT showed a trend of association with a higher treatment response (RR = 0.22; 95% CI 0.03, 1.51; p = 0.0876). Despite the population was heterogeneous, CYP3A4*22 and CYP2C8 SNPs may influence paclitaxel and nab-paclitaxel toxicity and ABCB1 c.3435 may affect taxanes effectiveness, even if any statistically significant was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Weger VA, Beijnenb JH, Schellensa JHM. Cellular and clinical pharmacology of the taxanes docetaxel and paclitaxel—a review. Anticancer Drugs. 2014;25:488–94.

    Article  PubMed  Google Scholar 

  2. Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol. 2013;4:164.

    Article  Google Scholar 

  3. Sparano JA, Wang M, Martino S, Jones V, Perez EA, Saphner T, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N. Engl J Med. 2008;358:1663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kudlowitz D, Muggia F. Defining risks of taxane neuropathy: insights from randomized clinical trials. Clin Cancer Res. 2013;19:4570–7.

    Article  CAS  PubMed  Google Scholar 

  5. Guo X, Sun H, Dong J, Feng Y, Li H, Zhuang R, et al. Does nab-paclitaxel have a higher incidence of peripheral neuropathy than solvent-based paclitaxel? Evidence from a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2019;139:16–23.

    Article  PubMed  Google Scholar 

  6. Chou PL, Huang YP, Cheng MH, Rau KM, Fang YP. Improvement of paclitaxel-associated adverse reactions (ADRs) via the use of nano-based drug delivery systems: a systematic review and network meta-analysis. Int J Nanomedicine. 2020;15:1731–43.

  7. Frederiks CN, Lam SW, Guchelaar HJ, Boven E. Genetic polymorphisms and paclitaxel- or docetaxel-induced toxicities: a systematic review. Cancer Treat Rev. 2015;41:935–50.

    Article  CAS  PubMed  Google Scholar 

  8. Rahman A, Korzekwa KR, Grogan J, Gonzalez FJ. Selective biotransformation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8. Cancer Res. 1994;54:5543–6.

    CAS  PubMed  Google Scholar 

  9. Shou M, Martinet M, Korzekwa KR, Krausz KW, Gonzalez FJ, Gelboin HV. Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics . 1998;8:391–401.

    Article  CAS  PubMed  Google Scholar 

  10. Hiratsuka M. Genetic polymorphisms and in vitro functional characterization of CYP2C8, CYP2C9, and CYP2C19 allelic variants. Biol Pharm Bull. 2016;39:1748–59.

    Article  CAS  PubMed  Google Scholar 

  11. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics .2001;11:597–607.

    Article  CAS  PubMed  Google Scholar 

  12. Bahadur N, Leathart JBS, Mutch E, Steimel-Crespi D, Dunn SA, Gilissen R, et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem Pharm. 2002;64:1579–89.

    Article  CAS  PubMed  Google Scholar 

  13. Henningsson A, Marsh S, Loos WJ, Karlsson MO, Garsa A, Mross K, et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res. 2005;11:8097–104.

    Article  CAS  PubMed  Google Scholar 

  14. Wang D, Wrighton SA, Guo Y, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11:274–86.

    Article  PubMed  Google Scholar 

  15. Okubo M, Murayama N, Shimizu M, Shimada T, Guengerich FP, Yamazaki H. The CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J Toxicol Sci. 2013;38:349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Graan AJM, Elens L, Sprowl JA, Sparreboom A, Friberg LE, Van Der Holt B, et al. CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin Cancer Res. 2013;19:3316–24.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27:383–91.

    Article  CAS  PubMed  Google Scholar 

  18. Tsai SM, Lin CY, Wu SH, Hou LA, Ma H, Tsai LY, et al. Side effects after docetaxel treatment in Taiwanese breast cancer patients with CYP3A4, CYP3A5, and ABCB1 gene polymorphisms. Clin Chim Acta. 2009;404:160–5.

    Article  CAS  PubMed  Google Scholar 

  19. Tran A, Jullien V, Alexandre J, Rey E, Rabillon F, Girre V, et al. Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin Pharm Ther. 2006;79:570–80.

    Article  CAS  Google Scholar 

  20. Sparreboom A, Van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DKF, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U.S.A. 1997;94:2031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bardelmeijer HA, Ouwehand M, Buckle T, Huisman MT, Schellens JHM, Beijnen JH, et al. Low systemic exposure of oral docetaxel in mice resulting from extensive first-pass metabolism is boosted by Ritonavir. Cancer Res. 2002;62:6158–64.

    CAS  PubMed  Google Scholar 

  22. Kroetz DL, Pauli-magnus C, Hodges LM, Huang CC, Kawamoto M, Johns SJ, et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics .2003;13:481–94.

    Article  CAS  PubMed  Google Scholar 

  23. Bergmann TK, Brasch-Andersen C, Gréen H, Mirza MR, Skougaard K, Wihl J, et al. Impact of ABCB1 variants on neutrophil depression: a pharmacogenomic study of paclitaxel in 92 women with ovarian cancer. Basic Clin Pharm Toxicol. 2012;110:199–204.

    Article  CAS  Google Scholar 

  24. Chang H, Rha SY, Jeung HC, Im CK, Ahn JB, Kwon WS, et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol. 2009;20:272–7.

    Article  CAS  PubMed  Google Scholar 

  25. Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RH. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics .2013;14:47–62.

    Article  CAS  PubMed  Google Scholar 

  26. Evans WE, Mcleod HL. Pharmacogenomics — Drug Disposition, Drug Targets, and Side Effects. N. Engl J Med. 2003;348:538–49.

    Article  CAS  PubMed  Google Scholar 

  27. Leskelä S, Jara C, Leandro-García LJ, Martínez A, García-Donas J, Hernando S, et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J. 2011;11:121–9.

    Article  PubMed  Google Scholar 

  28. Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the scottish randomised trial in ovarian cancer. J Clin Oncol. 2007;25:4528–35.

    Article  CAS  PubMed  Google Scholar 

  29. Kim KP, Ahn JH, Kim SB, Jung KH, Yoon DH, Lee JS, et al. Prospective evaluation of the drug-metabolizing enzyme polymorphisms and toxicity profile of docetaxel in Korean patients with operable lymph node-positive breast cancer receiving adjuvant chemotherapy. Cancer Chemother Pharm. 2012;69:1221–7.

    Article  CAS  Google Scholar 

  30. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of Taxol resistance related to microtubules. Oncogene .2003;22:7280–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo W, Dong W, Li M, Shen Y. Mitochondria P-glycoprotein confers paclitaxel resistance on ovarian cancer cells. Onco Targets Ther. 2019;12:3881–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoffmeyer S, Burk O, Von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U.S.A. 2000;97:3473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hamidovic A, Hahn K, Kolesar J. Clinical significance of ABCB1 genotyping in oncology. J Oncol Pharm Pr. 2010;16:39–44.

    Article  CAS  Google Scholar 

  34. Zhong J, Guo Z, Fan L, Zhao X, Zhao B, Cao Z, et al. ABCB1 polymorphism predicts the toxicity and clinical outcome of lung cancer patients with taxane-based chemotherapy. Thorac Cancer. 2019;10:2088–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Dalu.

Ethics declarations

Conflict of interest

LVN reports: grants from Eisai; speaker bureau, travel expenses for conference from Roche and Gentili; advisory role from Novartis and Celgene; advisor role, travel expenses for conference from Pfizer; advisory board from MSD. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demurtas, S., La Verde, N., Rota, S. et al. Single nucleotide polymorphisms to predict taxanes toxicities and effectiveness in cancer patients. Pharmacogenomics J 21, 491–497 (2021). https://doi.org/10.1038/s41397-021-00227-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-021-00227-7

  • Springer Nature Limited

This article is cited by

Navigation