Skip to main content

Advertisement

Log in

CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Checkpoint kinase 1 (CHK1) is a key component of the ATR (ataxia telangiectasia-mutated and Rad3-related)-dependent DNA damage response pathway that protect cells from replication stress, a cell intrinsic phenomenon enhanced by oncogenic transformation. Here, we show that CHK1 is overexpressed and hyperactivated in T-cell acute lymphoblastic leukemia (T-ALL). CHEK1 mRNA is highly abundant in patients of the proliferative T-ALL subgroup and leukemia cells exhibit constitutively elevated levels of the replication stress marker phospho-RPA32 and the DNA damage marker γH2AX. Importantly, pharmacologic inhibition of CHK1 using PF-004777736 or CHK1 short hairpin RNA-mediated silencing impairs T-ALL cell proliferation and viability. CHK1 inactivation results in the accumulation of cells with incompletely replicated DNA, ensuing DNA damage, ATM/CHK2 activation and subsequent ATM- and caspase-3-dependent apoptosis. In contrast to normal thymocytes, primary T-ALL cells are sensitive to therapeutic doses of PF-004777736, even in the presence of stromal or interleukin-7 survival signals. Moreover, CHK1 inhibition significantly delays in vivo growth of xenotransplanted T-ALL tumors. We conclude that CHK1 is critical for T-ALL proliferation and viability by downmodulating replication stress and preventing ATM/caspase-3-dependent cell death. Pharmacologic inhibition of CHK1 may be a promising therapeutic alternative for T-ALL treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Pui CH, Robison LL, Look AT . Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030–1043.

    CAS  PubMed  Google Scholar 

  2. Aifantis I, Raetz E, Buonamici S . Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8: 380–390.

    Article  CAS  PubMed  Google Scholar 

  3. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  4. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  5. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  6. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    CAS  PubMed  Google Scholar 

  7. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  8. Sarmento LM, Huang H, Limon A, Gordon W, Fernandes J, Tavares MJ et al. Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J Exp Med 2005; 202: 157–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dohda T, Maljukova A, Liu L, Heyman M, Grander D, Brodin D et al. Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. Exp Cell Res 2007; 313: 3141–3152.

    Article  CAS  PubMed  Google Scholar 

  10. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 2011; 43: 932–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Flex E, Petrangeli V, Stella L, Chiaretti S, Hornakova T, Knoops L et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med 2008; 205: 751–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bains T, Heinrich MC, Loriaux MM, Beadling C, Nelson D, Warrick A et al. Newly described activating JAK3 mutations in T-cell acute lymphoblastic leukemia. Leukemia 2012; 26: 2144–2146.

    Article  CAS  PubMed  Google Scholar 

  13. Barata JT, Cardoso AA, Nadler LM, Boussiotis VA . Interleukin-7 promotes survival and cell cycle progression of T-cell acute lymphoblastic leukemia cells by down-regulating the cyclin-dependent kinase inhibitor p27(kip1). Blood 2001; 98: 1524–1531.

    Article  CAS  PubMed  Google Scholar 

  14. Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 2011; 19: 484–497.

    Article  CAS  PubMed  Google Scholar 

  15. Lopez-Contreras AJ, Gutierrez-Martinez P, Specks J, Rodrigo-Perez S, Fernandez-Capetillo O . An extra allele of Chk1 limits oncogene-induced replicative stress and promotes transformation. J Exp Med 2012; 209: 455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith J, Tho LM, Xu N, Gillespie DA . The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 2010; 108: 73–112.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000; 14: 1448–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Toledo LI, Murga M, Fernandez-Capetillo O . Targeting ATR and Chk1 kinases for cancer treatment: a new model for new (and old) drugs. Mol Oncol 2011; 5: 368–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Hunter T . Roles of Chk1 in cell biology and cancer therapy. Int J Cancer 2013; 134: 1013–1023.

    Article  PubMed  Google Scholar 

  20. Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 2000; 288: 1425–1429.

    Article  CAS  PubMed  Google Scholar 

  21. Syljuasen RG, Sorensen CS, Hansen LT, Fugger K, Lundin C, Johansson F et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 2005; 25: 3553–3562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Katsuno Y, Suzuki A, Sugimura K, Okumura K, Zineldeen DH, Shimada M et al. Cyclin A-Cdk1 regulates the origin firing program in mammalian cells. Proc Natl Acad Sci USA 2009; 106: 3184–3189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petermann E, Woodcock M, Helleday T . Chk1 promotes replication fork progression by controlling replication initiation. Proc Natl Acad Sci USA 2010; 107: 16090–16095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 2001; 412: 557–561.

    Article  CAS  PubMed  Google Scholar 

  25. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol 2005; 7: 195–201.

    Article  CAS  PubMed  Google Scholar 

  26. Lam MH, Liu Q, Elledge SJ, Rosen JM . Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 2004; 6: 45–59.

    Article  CAS  PubMed  Google Scholar 

  27. Zaugg K, Su YW, Reilly PT, Moolani Y, Cheung CC, Hakem R et al. Cross-talk between Chk1 and Chk2 in double-mutant thymocytes. Proc Natl Acad Sci USA 2007; 104: 3805–3810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verlinden L, Vanden Bempt I, Eelen G, Drijkoningen M, Verlinden I, Marchal K et al. The E2F-regulated gene Chk1 is highly expressed in triple-negative estrogen receptor /progesterone receptor /HER-2 breast carcinomas. Cancer Res 2007; 67: 6574–6581.

    Article  CAS  PubMed  Google Scholar 

  29. Xu J, Li Y, Wang F, Wang X, Cheng B, Ye F et al. Suppressed miR-424 expression via upregulation of target gene Chk1 contributes to the progression of cervical cancer. Oncogene 2013; 32: 976–987.

    Article  CAS  PubMed  Google Scholar 

  30. Cole KA, Huggins J, Laquaglia M, Hulderman CE, Russell MR, Bosse K et al. RNAi screen of the protein kinome identifies checkpoint kinase 1 (CHK1) as a therapeutic target in neuroblastoma. Proc Natl Acad Sci USA 2011; 108: 3336–3341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carrassa L, Damia G . Unleashing Chk1 in cancer therapy. Cell Cycle 2011; 10: 2121–2128.

    Article  CAS  PubMed  Google Scholar 

  32. Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol. 2011; 18: 721–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zou L, Elledge SJ . Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003; 300: 1542–1548.

    Article  CAS  PubMed  Google Scholar 

  34. Liu S, Opiyo SO, Manthey K, Glanzer JG, Ashley AK, Amerin C et al. Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress. Nucleic Acids Res 2012; 40: 10780–10794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Forment JV, Blasius M, Guerini I, Jackson SP . Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation. PLoS ONE 2011; 6: e23517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gagou ME, Zuazua-Villar P, Meuth M . Enhanced H2AX phosphorylation, DNA replication fork arrest, and cell death in the absence of Chk1. Mol Biol Cell 2010; 21: 739–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang YW, Brognard J, Coughlin C, You Z, Dolled-Filhart M, Aslanian A et al. The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell 2009; 35: 442–453.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 2008; 133: 864–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Myers K, Gagou ME, Zuazua-Villar P, Rodriguez R, Meuth M . ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress. PLoS Genet 2009; 5: e1000324.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scupoli MT, Perbellini O, Krampera M, Vinante F, Cioffi F, Pizzolo G . Interleukin 7 requirement for survival of T-cell acute lymphoblastic leukemia and human thymocytes on bone marrow stroma. Haematologica 2007; 92: 264–266.

    Article  PubMed  Google Scholar 

  41. Silva A, Laranjeira AB, Martins LR, Cardoso BA, Demengeot J, Yunes JA et al. IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias. Cancer Res 2011; 71: 4780–4789.

    Article  CAS  PubMed  Google Scholar 

  42. Ribeiro D, Melao A, Barata JT . IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2013; 53: 211–222.

    Article  CAS  PubMed  Google Scholar 

  43. Sarmento LM, Barata JT . Therapeutic potential of Notch inhibition in T-cell acute lymphoblastic leukemia: rationale, caveats and promises. Expert Rev Anticancer Ther 2011; 11: 1403–1415.

    Article  CAS  PubMed  Google Scholar 

  44. Indraccolo S, Minuzzo S, Masiero M, Pusceddu I, Persano L, Moserle L et al. Cross-talk between tumor and endothelial cells involving the Notch3-Dll4 interaction marks escape from tumor dormancy. Cancer Res 2009; 69: 1314–1323.

    Article  CAS  PubMed  Google Scholar 

  45. Brooks K, Oakes V, Edwards B, Ranall M, Leo P, Pavey S et al. A potent Chk1 inhibitor is selectively cytotoxic in melanomas with high levels of replicative stress. Oncogene 2013; 32: 788–796.

    Article  CAS  PubMed  Google Scholar 

  46. Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M . Depletion of Chk1 leads to premature activation of Cdc2-cyclin B and mitotic catastrophe. J Biol Chem 2005; 280: 39246–39252.

    Article  CAS  PubMed  Google Scholar 

  47. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G . Cell death by mitotic catastrophe: a molecular definition. Oncogene 2004; 23: 2825–2837.

    Article  CAS  PubMed  Google Scholar 

  48. Ma CX, Janetka JW, Piwnica-Worms H . Death by releasing the breaks: CHK1 inhibitors as cancer therapeutics. Trends Mol Med 2011; 17: 88–96.

    Article  CAS  PubMed  Google Scholar 

  49. Sugimoto K, Sasaki M, Isobe Y, Tsutsui M, Suto H, Ando J et al. Hsp90-inhibitor geldanamycin abrogates G2 arrest in p53-negative leukemia cell lines through the depletion of Chk1. Oncogene 2008; 27: 3091–3101.

    Article  CAS  PubMed  Google Scholar 

  50. Dai Y, Rahmani M, Pei XY, Khanna P, Han SI, Mitchell C et al. Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK. Blood 2005; 105: 1706–1716.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang C, Yan Z, Painter CL, Zhang Q, Chen E, Arango ME et al. PF-00477736 mediates checkpoint kinase 1 signaling pathway and potentiates docetaxel-induced efficacy in xenografts. Clin Cancer Res 2009; 15: 4630–4640.

    Article  CAS  PubMed  Google Scholar 

  52. Brown EJ, Baltimore D . ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 2000; 14: 397–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 2013; 153: 1552–1566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montana MF et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 2011; 18: 1331–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008; 118: 3762–3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barata JT, Boussiotis VA, Yunes JA, Ferrando AA, Moreau LA, Veiga JP et al. IL-7-dependent human leukemia T-cell line as a valuable tool for drug discovery in T-ALL. Blood 2004; 103: 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  57. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 2006; 124: 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  58. Real G, Monteiro F, Burger C, Alves PM . Improvement of lentiviral transfer vectors using cis-acting regulatory elements for increased gene expression. Appl Microbiol Biotechnol 2011; 91: 1581–1591.

    Article  CAS  PubMed  Google Scholar 

  59. Barde I, Salmon P, Trono D . Production and titration of lentiviral vectors. Curr Protoc Neurosci 2010; 53: 4.21.1–4.21.23.

    Google Scholar 

  60. Lonetti A, Antunes IL, Chiarini F, Orsini E, Buontempo F, Ricci F et al. Activity of the pan-class I phosphoinositide 3-kinase inhibitor NVP-BKM120 in T-cell acute lymphoblastic leukemia. Leukemia 2013; 28: 1196–1206.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant PTDC/SAU-ONC/113202/2009 from Fundação para a Ciência e a Tecnologia (FCT), Portugal. LMS, RN, IA, LRM and CM had postdoctoral fellowships, and VP a BI fellowship, all from FCT. We thank Dr J Ferreira for fruitful discussions and reagents. We also thank Dr O Fernandez-Capetillo and Centro Nacional de Investigaciones Oncologicas for providing the ATR inhibitor. We especially thank the generosity of patients and their families, and the collaboration of all the team from the Pediatrics Service of Instituto Português de Oncologia de Lisboa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J T Barata.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmento, L., Póvoa, V., Nascimento, R. et al. CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress. Oncogene 34, 2978–2990 (2015). https://doi.org/10.1038/onc.2014.248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.248

  • Springer Nature Limited

This article is cited by

Navigation