Skip to main content

Advertisement

Log in

Improvement of lentiviral transfer vectors using cis-acting regulatory elements for increased gene expression

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lentiviral vectors are an important tool for gene delivery in vivo and in vitro. The success of gene transfer approaches relies on high and stable levels of gene expression. To this end, several molecular strategies have been employed to manipulate these vectors towards improving gene expression in the targeted animal cells. Low gene expression can be accepted due to the weak transcription from the majority of available mammalian promoters; however, this obstacle can be in part overcome by the insertion of cis-acting elements that enhance gene expression in various expression contexts. In this work, we created different lentiviral vectors in which several posttranscriptional regulatory elements, namely the Woodchuck hepatitis posttranscriptional regulatory element (WPRE) and different specialized poly(A) termination sequences (BGH and SV40) were used to develop vectors leading to improved transgene expression. These vectors combine the advantages of restriction enzyme/ligation-independent cloning eliminating the instability and recombinogenic problems occurring from traditional cloning methods in lentiviral expression vectors and were tested by expressing GFP and the firefly Luciferase reporter gene from different cellular promoters in different cell lines. We show that the promoter activity varies between cell lines and is affected by the lentiviral genomic context. Moreover, we show that the combination of the WPRE element with the BGH poly(A) signal significantly enhances transgene expression. The vectors herein created can be easily modified and adapted without the need for extensive recloning making them a valuable tool for viral vector development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ailles LE, Naldini L (2002) HIV-1-derived lentiviral vectors. Curr Top Microbiol Immunol 261:31–52

    CAS  PubMed  Google Scholar 

  • Azzoni AR, Ribeiro SC, Monteiro GA, Prazeres DM (2007) The impact of poly(A)denylation signals on plasmid nuclease-resistance and transgene expression. J Gene Med 9:392–402

    Article  CAS  Google Scholar 

  • Boles TC, White JH, Cozzarelli NR (1990) Structure of plectonemically supercoiled DNA. J Mol Biol 213:931–951

    Article  CAS  Google Scholar 

  • Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, Campisi J, Yaswen P, Cooper PK, Kaufman PD (2009) A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One 4:e6529

    Article  Google Scholar 

  • Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M, Jaenisch R (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci USA 106:157–162

    Article  CAS  Google Scholar 

  • Galimi F, Verma IM (2002) Opportunities for the use of lentiviral vectors in human gene therapy. Curr Top Microbiol Immunol 261:245–254

    CAS  PubMed  Google Scholar 

  • Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417–1423

    Article  CAS  Google Scholar 

  • Gimmi ER, Reff ME, Deckman IC (1989) Alterations in the pre-mRNA topology of the bovine growth hormone polyadenylation region decrease poly(A) site efficiency. Nucleic Acids Res 17:6983–6998

    Article  CAS  Google Scholar 

  • Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74

    Article  CAS  Google Scholar 

  • Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    Article  CAS  Google Scholar 

  • Gruh I, Wunderlich S, Winkler M, Schwanke K, Heinke J, Blomer U, Ruhparwar A, Rohde B, Li RK, Haverich A, Martin U (2008) Human CMV immediate-early enhancer: a useful tool to enhance cell-type-specific expression from lentiviral vectors. J Gene Med 10:21–32

    Article  CAS  Google Scholar 

  • Hager S, Frame FM, Collins AT, Burns JE, Maitland NJ (2008) An internal polyadenylation signal substantially increases expression levels of lentivirus-delivered transgenes but has the potential to reduce viral titer in a promoter-dependent manner. Hum Gene Ther 19:840–850

    Article  CAS  Google Scholar 

  • Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    Article  CAS  Google Scholar 

  • Hlavaty J, Schittmayer M, Stracke A, Jandl G, Knapp E, Felber BK, Salmons B, Günzburg WH, Renner M (2005) Effect of posttranscriptional regulatory elements on transgene expression and virus production in the context of retrovirus vectors. Virology 341:1–11

    Article  CAS  Google Scholar 

  • Iwakuma T, Cui Y, Chang LJ (1999) Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261:120–132

    Article  CAS  Google Scholar 

  • Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17:16–23

    CAS  PubMed  Google Scholar 

  • Klein R, Ruttkowski B, Knapp E, Salmons B, Günzburg WH, Hohenadl C (2006) WPRE-mediated enhancement of gene expression is promoter and cell line specific. Gene 372:153–161

    Article  CAS  Google Scholar 

  • Lew D, Parker SE, Latimer T, Abai AM, Kuwahara-Rundell A, Doh SG, Yang ZY, Laface D, Gromkowski SH, Nabel GJ, Manthorpe JN (1995) Cancer gene therapy using plasmid DNA: pharmacokinetic study of DNA following injection in mice. Hum Gene Ther 6:553–564

    Article  CAS  Google Scholar 

  • Liu Q, Li MZ, Leibham D, Cortez D, Elledge SJ (1998) The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr Biol 8:1300–1309

    Article  CAS  Google Scholar 

  • Loeb JE, Cordier WS, Harris ME, Weitzman MD, Hope TJ (1999) Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Hum Gene Ther 10:2295–2305

    Article  CAS  Google Scholar 

  • Mastroyiannopoulos NP, Feldman ML, Uney JB, Mahadevan MS, Phylactou LA (2005) Woodchuck post-transcriptional element induces nuclear export of myotonic dystrophy 3′ untranslated region transcripts. EMBO Rep 6:458–463

    Article  CAS  Google Scholar 

  • Mitta B, Rimann M, Ehrengruber MU, Ehrbar M, Djonov V, Kelm J, Fussenegger M (2002) Advanced modular self-inactivating lentiviral expression vectors for multigene interventions in mammalian cells and in vivo transduction. Nucleic Acids Res 30:e113

    Article  Google Scholar 

  • Moreau-Gaudry F, Xia P, Jiang G, Perelman NP, Bauer G, Ellis J, Surinya KH, Mavilio F, Shen CK, Malik P (2001) High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 98:2664–2672

    Article  CAS  Google Scholar 

  • Pfarr DS, Rieser LA, Woychik RP, Rottman FM, Rosenberg M, Reff ME (1986) Differential effects of polyadenylation regions on gene expression in mammalian cells. DNA 5:115–122

    Article  CAS  Google Scholar 

  • Puca R, Nardinocchi L, Bossi G, Sacchi A, Rechavi G, Givol D, D’Orazi G (2009) Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc. Exp Cell Res 315:67–75

    Article  CAS  Google Scholar 

  • Ramezani A, Hawley TS, Hawley RG (2000) Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther 2:458–469

    Article  CAS  Google Scholar 

  • Ribeiro SC, Monteiro GA, Prazeres DM (2004) The role of polyadenylation signal secondary structures on the resistance of plasmid vectors to nucleases. J Gene Med 6:565–573

    Article  CAS  Google Scholar 

  • Sadowski PD (2003) The Flp double cross system a simple efficient procedure for cloning DNA fragments. BMC Biotechnol 3:9

    Article  Google Scholar 

  • Sastry L, Johnson T, Hobson MJ, Smucker B, Cornetta K (2002) Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 9:1155–1162

    Article  CAS  Google Scholar 

  • Schambach A, Wodrich H, Hildinger M, Bohne J, Krausslich HG, Baum C (2000) Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol Ther 2:435–445

    Article  CAS  Google Scholar 

  • Schwenter F, Deglon N, Aebischer P (2003) Optimization of human erythropoietin secretion from MLV-infected human primary fibroblasts used for encapsulated cell therapy. J Gene Med 5:246–257

    Article  CAS  Google Scholar 

  • Stark WM, Boocock MR, Sherratt DJ (1992) Catalysis by site-specific recombinases. Trends Genet 8:432–439

    Article  CAS  Google Scholar 

  • Sun J, Li D, Hao Y, Zhang Y, Fan W, Fu J, Hu Y, Liu Y, Shao Y (2009) Posttranscriptional regulatory elements enhance antigen expression and DNA vaccine efficacy. DNA Cell Biol 28:233–240

    Article  CAS  Google Scholar 

  • Trono D (2000) Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther 7:20–23

    Article  CAS  Google Scholar 

  • Xu ZL, Mizuguchi H, Ishii-Watabe A, Uchida E, Mayumi T, Hayakawa T (2002) Strength evaluation of transcriptional regulatory elements for transgene expression by adenovirus vector. J Control Release 81:155–163

    Article  CAS  Google Scholar 

  • Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    Article  CAS  Google Scholar 

  • Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Didier Trono for kindly providing packaging plasmid psPAX.2 and envelope plasmid pMD2.G, and Dr. Eric Campeau for providing plasmids pENTR4 and pLentiX1. We thank Dr. Ana Sofia Coroadinha for the helpful suggestions and critically reading the manuscript. We thank Nuno Carinhas for the help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Real.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Real, G., Monteiro, F., Burger, C. et al. Improvement of lentiviral transfer vectors using cis-acting regulatory elements for increased gene expression. Appl Microbiol Biotechnol 91, 1581–1591 (2011). https://doi.org/10.1007/s00253-011-3392-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3392-2

Keywords

Navigation