Skip to main content
Log in

Transforming pathways unleashed by a HDAC2 mutation in human cancer

  • Short Communication
  • Published:
Oncogene Submit manuscript

Abstract

Although disruption of histone modification patterns is a common hallmark of human cancer, our knowledge of the mechanistic role of histone-modifying enzymes in its generation is very limited. We have recently identified an inactivating mutation in the histone deacetylase-2 (HDAC2) in sporadic carcinomas with microsatellite instability and in tumors arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. Since HDAC2 seems to be a central player in epigenetic gene repression, we wondered whether HDAC2-truncating mutations conferred a particular expression signature on these cancer cells. Using unsupervised clustering analysis in microsatellite-unstable colorectal cancer cell lines, we have found that HDAC2 mutant cells (RKO and Co115) show a characteristically different expression microarray signature from HDAC2 wild-type cells (HCT-116, SW48, HCT-15 and LoVo). HDAC2 mutant cells exhibit upregulation of tumor-promoting genes, such as those of tyrosine kinases, mediators of cell cycle progression and angiogenic factors. The overexpression of these genes is associated with a loss of HDAC2 recruitment and a gain of histone H4 hyperacetylation in their particular 5′-end promoters, as observed by chromatin immunoprecipitation. Transfection of wild-type HDAC2 in mutant cells reverted this epigenetic pattern by repressing the transforming genes in association with HDAC2 promoter occupancy. These results suggest a role for HDAC2 mutations in human tumorigenesis through the derepression of key genes from multiple cellular transformation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J et al. (2003). Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J 22: 6335–6345.

    Article  CAS  Google Scholar 

  • Dopazo J, Carazo JM . (1997). Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a phylogenetic tree. J Mol Evol 44: 226–233.

    Article  CAS  Google Scholar 

  • Esteller M . (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8: 286–298.

    Article  CAS  Google Scholar 

  • Fahrner JA, Eguchi S, Herman JG, Baylin SB . (2002). Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 62: 7213–7218.

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391–400.

    Article  CAS  Google Scholar 

  • Frolov MV, Dyson NJ . (2004). Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci 117: 2173–2181.

    Article  CAS  Google Scholar 

  • Glozak MA, Seto E . (2007). Histone deacetylases and cancer. Oncogene 26: 5420–5432.

    Article  CAS  Google Scholar 

  • Jones PA, Baylin SB . (2007). The epigenomics of cancer. Cell 128: 683–692.

    Article  CAS  Google Scholar 

  • Kouzarides T . (2007). Chromatin modifications and their function. Cell 128: 693–705.

    Article  CAS  Google Scholar 

  • Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X et al. (2007). Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21: 1790–1802.

    Article  CAS  Google Scholar 

  • Nguyen CT, Gonzales FA, Jones PA . (2001). Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res 29: 4598–4606.

    Article  CAS  Google Scholar 

  • Richon VM, Sandhoff TW, Rifkind RA, Marks PA . (2000). Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97: 10014–10019.

    Article  CAS  Google Scholar 

  • Ropero S, Esteller M . (2007). The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1: 19–25.

    Article  CAS  Google Scholar 

  • Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M et al. (2006). A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 38: 566–569.

    Article  CAS  Google Scholar 

  • Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M et al. (2005). Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435: 1262–1266.

    Article  CAS  Google Scholar 

  • Strahl BD, Allis CD . (2000). The language of covalent histone modifications. Nature 403: 41–45.

    Article  CAS  Google Scholar 

  • Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T et al. (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13: 324–331.

    Article  CAS  Google Scholar 

  • Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Göttlicher M . (2004). Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5: 455–463.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Health (FIS01-04) and Education and Science (I+D+I MCYT08-03, FU2004-02073/BMC and Consolider MEC09-05) Departments of the Spanish Government, the European Grant Transfog LSHC-CT-2004-503438 and the Spanish Association Against Cancer (AECC). SR is a ‘RamÓn y Cajal’ Researcher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Esteller.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ropero, S., Ballestar, E., Alaminos, M. et al. Transforming pathways unleashed by a HDAC2 mutation in human cancer. Oncogene 27, 4008–4012 (2008). https://doi.org/10.1038/onc.2008.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.31

  • Springer Nature Limited

Keywords

This article is cited by

Navigation