Skip to main content
Log in

Designs on a curve

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

The structural rules governing the curving folds of solenoid proteins, as distilled down to the level of the underlying sequence repeats, provide designers with the tools to reliably fashion new variants with tunable geometries. Bespoke leucine-rich repeat (LRR) scaffolds, as recognition proteins, can now be tailored to better fit their targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Overview of the main steps of the design procedure applied by Baker and co-workers6.
Figure 2: Different examples of curved solenoid proteins (green ribbon) bound to globular proteins or DNA (yellow and orange surfaces).

Accession codes

Accessions

Protein Data Bank

References

  1. Wolynes, P.G. Proc. Natl. Acad. Sci. USA 93, 14249–14255 (1996).

    Article  CAS  Google Scholar 

  2. Blaber, M., Lee, J. & Longo, L. Cell. Mol. Life Sci. 69, 3999–4006 (2012).

    Article  CAS  Google Scholar 

  3. Kajava, A.V. J. Struct. Biol. 179, 279–288 (2012).

    Article  CAS  Google Scholar 

  4. Kobe, B. & Kajava, A.V. Trends Biochem. Sci. 25, 509–515 (2000).

    Article  CAS  Google Scholar 

  5. Rämisch, S. et al. Proc. Natl. Acad. Sci. USA 111, 17875–17880 (2014).

    Article  Google Scholar 

  6. Park, K. et al. Nat. Struct. Mol. Biol. 22, 167–174 (2015).

    Article  CAS  Google Scholar 

  7. Baretic´, D. & Williams, R.L. Curr. Opin. Struct. Biol. 29, 134–142 (2014).

    Article  Google Scholar 

  8. Han, Z., Sun, Y. & Chai, J. Curr. Opin. Plant Biol. 20, 55–63 (2014).

    Article  CAS  Google Scholar 

  9. Enkhbayar, P. et al. J. Proteomics Bioinform. 7, 139–150 (2014).

    Article  Google Scholar 

  10. Miyashita, H. et al. Protein Pept. Lett. 21, 292–305 (2014).

    Article  CAS  Google Scholar 

  11. Javadi, Y. & Itzhaki, L.S. Curr. Opin. Struct. Biol. 23, 622–631 (2013).

    Article  CAS  Google Scholar 

  12. Main, E.R.G., Jackson, S.E. & Regan, L. Curr. Opin. Struct. Biol. 13, 482–489 (2003).

    Article  CAS  Google Scholar 

  13. Schilling, J., Schöppe, J. & Plückthun, A. J. Mol. Biol. 426, 691–721 (2014).

    Article  CAS  Google Scholar 

  14. Koga, N. et al. Nature 491, 222–227 (2012).

    Article  CAS  Google Scholar 

  15. Parmeggiani, F. et al. J. Mol. Biol. 427, 563–575 (2015).

    Article  CAS  Google Scholar 

  16. Voet, A.R.D. et al. Proc. Natl. Acad. Sci. USA 111, 15102–15107 (2014).

    Article  CAS  Google Scholar 

  17. Hindle, K.L., Bella, J. & Lovell, S.C. Proteins 77, 342–358 (2009).

    Article  CAS  Google Scholar 

  18. Schreiber, G. & Fleishman, S.J. Curr. Opin. Struct. Biol. 23, 903–910 (2013).

    Article  CAS  Google Scholar 

  19. Lee, S.C. et al. Proc. Natl. Acad. Sci. USA 109, 3299–3304 (2012).

    Article  CAS  Google Scholar 

  20. Ng, A.C. et al. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4631–4638 (2011).

    Article  CAS  Google Scholar 

  21. Özkan, E. et al. Cell 154, 228–239 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Fernando Bazan or Andrey V Kajava.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazan, J., Kajava, A. Designs on a curve. Nat Struct Mol Biol 22, 103–105 (2015). https://doi.org/10.1038/nsmb.2966

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2966

  • Springer Nature America, Inc.

This article is cited by

Navigation