Skip to main content
Log in

Studying plasmid horizontal transfer in situ: a critical review

  • Review Article
  • Published:

From Nature Reviews Microbiology

View current issue Sign up to alerts

Key Points

  • This review focuses on the techniques used to analyse plasmid transfer and to study the extent of horizontal gene transfer (HGT) in the environment.

  • Typically, direct evidence of in situ plasmid transfer in natural environments was obtained using plasmid-encoded phenotypes such as antibiotic resistance. As yet, there is no agreed consensus on the best system to report the extent of plasmid transfer and so it is difficult to compare results from different studies; in this review, the transconjugant to donor ratio (T/D) is used.

  • The main problems associated with traditional methods of analysis are identified: culture-based techniques cannot distinguish between an increased number of transfer events and post-transfer selection, and these methods produce a population-averaged measure of gene transfer and therefore cannot provide an insight into the spatial extent of HGT, especially within microcolonies and biofilms. The extent of gene transfer in the environment might therefore have been underestimated.

  • New methods for in situ analysis include the use of reporter genes — such as gfp (green fluorescent protein), either in a single or dual labelling assay in conjunction with fluorescence analysis — which can be used to assess both the extent of HGT and plasmid host range. Although this technique has been used successfully, it should be noted that not all transconjugant bacteria can be detected using reported genes, as some transconjugants might not efficiently transcribe the reporter gene, and codon usage can hinder translation of reporter-gene mRNA in certain bacteria.

  • To date, studies of the extent of plasmid transfer in situ have not only been able to identify environmental factors that influence the frequency of conjugal gene transfer, they have also identified certain environmental hot spots for gene transfer, such as biofilms, and additional studies have shown that the spatial structure or architecture of the biofilm has a decisive role in gene transfer.

  • Mathematical models are also used to analyse the frequency of plasmid transfer. Although many of the currently available models are of limited value as they are based on an assumption of a completely mixed, homogeneous environment with population-averaged behaviour, recent useful developments include individual-based models, which model a population or community by describing the actions and properties of the individuals comprising this population or community. If IbMs can be developed into individual-based conjugal models, this could facilitate the interpretation of experimental observations on the role of plasmid transfer by providing a quantitative and predictive framework for understanding bacterial-community response and adaptation.

Abstract

This review deals with the prospective, experimental documentation of horizontal gene transfer (HGT) and its role in real-time, local adaptation. We have focused on plasmids and their function as an accessory and/or adaptive gene pool. Studies of the extent of HGT in natural environments have identified certain hot spots, and many of these involve biofilms. Biofilms are uniquely suited for HGT, as they sustain high bacterial density and metabolic activity, even in the harshest environments. Single-cell detection of donor, recipient and transconjugant bacteria in various natural environments, combined with individual-based mathematical models, has provided a new platform for HGT studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: A schematic outline of the transfer reporter-gene approach.
Figure 2: Detection of the host range of horizontal gene transfer (HGT) without cultivation.
Figure 3: Horizontal gene transfer (HGT) in the phyllosphere.
Figure 4: Horizontal gene transfer in biofilms.

Similar content being viewed by others

References

  1. Mølbak, L. et al. The plasmid genome database. Microbiology 149, 3043–3045 (2003).

    PubMed  Google Scholar 

  2. Turner, S. L., Bailey, M. J., Lilley, A. K. & Thomas, C. M. Ecological and molecular maintenance strategies of mobile genetic elements. FEMS Microbiol. Ecol. 42, 177–185 (2002).

    CAS  PubMed  Google Scholar 

  3. van Elsas, J. D. & Bailey, M. J. The ecology of transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42, 187–197 (2002).

    CAS  PubMed  Google Scholar 

  4. Thomas, C. M. Paradigms of plasmid organization. Mol. Microbiol. 37, 485–491 (2000).

    CAS  PubMed  Google Scholar 

  5. Hofreuter, D., Odenbreit, S. & Haas, R. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol. Microbiol. 41, 379–391 (2001).

    CAS  PubMed  Google Scholar 

  6. Bacon, D. J. et al. Involvement of a plasmid in virulence of Campylobacter jejuni. 81–176. Infect. Immun. 68, 4384–4390 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ding, Z., Atmakuri, K. & Christie, P. J. The outs and ins of bacterial type IV secretion substrates. Trends Microbiol. 11, 527–535 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nature Rev. Microbiol. 1, 137–149 (2003).

    CAS  Google Scholar 

  9. Szpirer, C., Top, E., Couturier, M. & Mergeay, M. Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance. Microbiology 145, 3321–3329 (1999).

    CAS  PubMed  Google Scholar 

  10. Ghigo, J. M. Natural conjugative plasmids induce bacterial biofilm development. Nature 412, 442–445 (2001). Natural conjugative plasmids were shown to express factors (pili) that induce planktonic cells to form or enter biofilm communities, facilitating transfer of the plasmids. The expression of biofilm-promoting factors could enhance the probability of transfer and explain the maintenance of cryptic plasmids found in natural bacterial populations by offsetting the segregational loss.

    CAS  PubMed  Google Scholar 

  11. Syvanen, M. Horizontal gene transfer: evidence and possible consequences. Annu. Rev. Genet. 28, 237–261 (1994).

    CAS  PubMed  Google Scholar 

  12. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    CAS  PubMed  Google Scholar 

  13. van der Meer, J. R., de Vos, W. M., Harayama, S. & Zehnder, A. J. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol. Rev. 56, 677–694 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Springael, D. & Top, E. M. Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Trends Microbiol. 12, 53–58 (2004).

    CAS  PubMed  Google Scholar 

  15. Tan, H. M. Bacterial catabolic transposons. Appl. Microbiol. Biotechnol. 51, 1–12 (1999).

    CAS  PubMed  Google Scholar 

  16. Top, E. M., De Rore, H., Collard, J. -M., Gellens, V. & Slobodkina, G. Retromobilization of heavy metal resistance genes in unpolluted and heavy metal polluted soil. FEMS Microbiol. Ecol. 18, 191–203 (1995).

    CAS  Google Scholar 

  17. Lilley, A. K. & Bailey, M. J. The acquisition of indigenous plasmids by a genetically marked pseudomonad population colonizing the sugar beet phytosphere is related to local environmental conditions. Appl. Environ. Microbiol. 63, 1577–1583 (1997). The first demonstration of natural plasmid-mediated gene transfer in situ and its direct role in enhancing host fitness.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Neilson, J. W. et al. Frequency of horizontal gene transfer of a large catabolic plasmid (pJP4) in soil. Appl. Environ. Microbiol. 60, 4053–4058 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sengeløv, G. & Sørensen, S. J. Methods for detection of conjugative plasmid transfer in aquatic environments. Curr. Microbiol. 37, 274–280 (1998).

    PubMed  Google Scholar 

  20. Henschke, R. B. & Schmidt, F. R. J. Plasmid mobilization from genetically engineered bacteria to members of the indigenous soil microflora in situ. Curr. Microbiol. 20, 105–110 (1990). This is the first study that shows plasmid transfer to indigenous bacteria in soil.

    CAS  Google Scholar 

  21. Davison, J. Genetic exchange between bacteria in the environment. Plasmid 42, 73–91 (1999).

    CAS  PubMed  Google Scholar 

  22. Richaume, A., Smit, E., Faurie, G. & van Elsas, J. D. Influence of soil type on the transfer of plasmid RP4p from Pseudomonas fluorescens to introduced recipient and to indigenous bacteria. FEMS Microbiol. Ecol. 101, 281–292 (1992).

    CAS  Google Scholar 

  23. Richaume, A., Angle, J. S. & Sadowsky, M. J. Influence of soil variables on in situ plasmid transfer from Escherichia coli to Rhizobium fredii. Appl. Environ. Microbiol. 55, 1730–1734 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rochelle, P. A., Fry, J. C. & Day, M. J. Factors affecting conjugal transfer of plasmids encoding mercury resistance from pure cultures and mixed natural suspensions of epilithic bacteria. J. Gen. Microbiol. 135, 409–424 (1989).

    CAS  PubMed  Google Scholar 

  25. Trevors, J. T., Van Elsas, J. D., Van Overbeek, L. S. & Starodub, M. -E. Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm. Appl. Environ. Microbiol. 56, 401–408 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sørensen, S. J., Schyberg, T. & Rønn, R. Predation by protozoa on Escherichia coli K12 in soil and transfer of resistance plasmid RP4 to indigenous bacteria in soil. Appl. Soil Ecol. 11, 79–90 (1999).

    Google Scholar 

  27. Daane, L. L., Molina, J. A. E. & Sadowsky, M. J. Plasmid transfer between spatially separated donor and recipient bacteria in earthworm-containing soil microcosms. Appl. Environ. Microbiol. 63, 679–686 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sengeløv, G., Kowalchuk, G. A. & Sørensen, S. J. Influence of fungal–bacterial interactions on bacterial conjugation in the residuesphere. FEMS Microbiol. Ecol. 31, 39–45 (2000).

    PubMed  Google Scholar 

  29. Sørensen, S. J. & Jensen, L. E. Transfer of plasmid RP4 in bulk soil and barley seedling microcosms. Antonie van Leeuwenhoek 73, 1–9 (1998).

    Google Scholar 

  30. De Rore, H. et al. Transfer of the catabolic plasmid RP4::Tn4371 to indigenous soil bacteria and its effect on respiration and biphenyl breakdown. FEMS Microbiol. Ecol. 15, 71–77 (1994).

    Google Scholar 

  31. Newby, D. T., Josephson, K. L. & Pepper, I. L. Detection and characterization of plasmid pJP4 transfer to indigenous soil bacteria. Appl. Environ. Microbiol. 66, 290–296 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lilley, A. K., Fry, J. C., Day, M. J. & Bailey, M. J. In-situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugar-beet rhizosphere. Microbiology 140, 27–33 (1994).

    CAS  Google Scholar 

  33. Torsvik, V., Goksøyr, J. & Daae, F. L. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782–787 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagner, M., Amann, R., Lemmer, H. & Schleifer, K. H. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59, 1520–1525 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Oliver, J. D. The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol. Lett. 133, 203–208 (1995).

    CAS  PubMed  Google Scholar 

  37. Hoffmann, A. et al. Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl. Environ. Microbiol. 64, 2652–2659 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Palomares, A. J., Vazquez, M. E., Rodriguez-Llorente, I. D., Dary, M. & Caviedes, M. A. Plasmid transfer detection in soil using the inducible lPR system fused to eukaryotic luciferase genes. Microb. Ecol. 41, 352–359 (2001).

    CAS  PubMed  Google Scholar 

  39. Jaenecke, S., de Lorenzo, V., Timmis, K. N. & Diaz, E. A stringently controlled expression system for analysing lateral gene transfer between bacteria. Mol. Microbiol. 21, 293–300 (1996).

    CAS  PubMed  Google Scholar 

  40. Normander, B., Christensen, B. B., Molin, S. & Kroer, N. Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Appl. Environ. Microbiol. 64, 1902–1909 (1998). The first use of a gfp marker gene for visualization of plasmid transfer in a terrestrial habitat.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Christensen, B. B., Sternberg, C. & Molin, S. Bacterial plasmid conjugation on semi-solid surfaces monitored with the green fluorescent protein (GFP) from Aequorea victoria as a marker. Gene 173, 59–65 (1996). This is the first paper that shows single-cell detection of horizontal transfer of a gfp -labelled TOL plasmid, providing details on the distribution of cells active in conjugation.

    CAS  PubMed  Google Scholar 

  42. Dahlberg, C., Bergstrom, M. & Hermansson, M. In situ detection of high levels of horizontal plasmid transfer in marine bacterial communities. Appl. Environ. Microbiol. 64, 2670–2675 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mølbak, L., Licht, T. R., Kvist, T., Kroer, N. & Andersen, S. R. Plasmid transfer from Pseudomonas putida to the indigenous bacteria on alfalfa sprouts: characterization, direct quantification, and in situ location of transconjugant cells. Appl. Environ. Microbiol. 69, 5536–5542 (2003).

    PubMed  PubMed Central  Google Scholar 

  44. Haagensen, J. A. J., Hansen, S. K., Johansen, T. & Molin, S. In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42, 261–268 (2002).

    CAS  PubMed  Google Scholar 

  45. Nancharaiah, Y. V. et al. Dual labeling of Pseudomonas putida with fluorescent proteins for in situ monitoring of conjugal transfer of the TOL plasmid. Appl. Environ. Microbiol. 69, 4846–4852 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Davey, H. M. & Kell, D. B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Rev. 60, 641–696 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sørensen, S. J., Sørensen, A. H., Hansen, L. H., Oregaard, G. & Veal, D. Direct detection and quantification of horizontal gene transfer by using flow cytometry and gfp as a reporter gene. Curr. Microbiol. 47, 129–133 (2003). This paper shows the usefulness of combining reporter-gene technology and flow cytometry to detect HGT between bacteria. This cultivation-independent detection method provides excellent statistics and should easily be applicable to detect HGT in complex, heterogeneous environments

    PubMed  Google Scholar 

  48. Hausner, M. & Wuertz, S. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbiol. 65, 3710–3713 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Trieu-Cuot, P., Carlier, C., Poyart-Salmeron, C. & Courvalin, P. Shuttle vectors containing a multiple cloning site and a LacZ alpha gene for conjugal transfer of DNA from Escherichia coli to Gram-positive bacteria. Gene 102, 99–104 (1991).

    CAS  PubMed  Google Scholar 

  50. Götz, A. et al. Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl. Environ. Microbiol. 62, 2621–2628 (1996).

    PubMed  PubMed Central  Google Scholar 

  51. Wuertz, S., Okabe, S. & Hausner, M. Microbial communities and their interactions in biofilm systems: an overview. Water Sci. Technol. 49, 327–336 (2004).

    CAS  PubMed  Google Scholar 

  52. Saye, J. D. & Miller, R. V. in Gene Transfer in the Environment (eds. Levy, S. B. & Miller, R. V.) 223–259 (McGraw–Hill Publishing Company, New York, 1989).

    Google Scholar 

  53. Mach, P. A. & Grimes, D. J. R-plasmid transfer in a wastewater treatment plant. Appl. Environ. Microbiol. 44, 1395–1403 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. McClure, N. C., Fry, J. C. & Weightman, A. J. in Bacterial Genetics in Natural Environments (eds. Fry, J. C. & Day, M. J.) 111–129 (Chapman and Hall, London, 1990).

    Google Scholar 

  55. Nusslein, K., Maris, D., Timmis, K. & Dwyer, D. F. Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms. Appl. Environ. Microbiol. 58, 3380–3386 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bale, M. J., Day, M. J. & Fry, J. C. Novel method for studying plasmid transfer in undisturbed river epilithon. Appl. Environ. Microbiol. 54, 2756–2758 (1988). This paper describes the development of the exogenous isolation method for extracting conjugative plasmids from natural bacterial communities.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stotzky, G., Devanas, M. A. & Zeph, L. R. in Advances in Applied Microbiology (eds. Neidleman, S. L. & Laskin, A. I.) 57–169 (Academic Press Inc., San Diego, 1990).

    Google Scholar 

  58. Schwaner, N. E. & Kroer, N. Effect of plant species on the kinetics of conjugal transfer in the rhizosphere and relation to bacterial metabolic activity. Microb. Ecol. 42, 458–465 (2001).

    CAS  PubMed  Google Scholar 

  59. Bahl, M. I., Sørensen, S. J., Hansen, L. H. & Licht, T. R. Effect of tetracycline on transfer and establishment of the tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl. Environ. Microbiol. 70, 758–764 (2004). This study shows that the increased number of transconjugants in the presence of antibiotic pressure is not due to increased gene transfer but to post-transfer selection (clonal expansion of recipient population).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Licht, T. R., Christensen, B. B., Krogfelt, K. A. & Molin, S. Plasmid transfer in the animal intestine and other dynamic bacterial populations: the role of community structure and environment. Microbiology 145, 2615–2622 (1999).

    CAS  PubMed  Google Scholar 

  61. Roberts, M. C. in Gene Transfer in the Environment (eds. Levy, S. & Miller, R.) 347–375 (McGraw–Hill, New York, 1989).

    Google Scholar 

  62. Wuertz, S. in Encyclopedia of Environmental Microbiology (ed. Bitton, G.) 1408–1420 (John Wiley and Sons, New York, 2002).

    Google Scholar 

  63. Molin, S. & Tolker-Nielsen, T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr. Opin. Biotechnol. 14, 255–261 (2003).

    CAS  PubMed  Google Scholar 

  64. Wuertz, S., Hendrickx, L., Kuehn, M., Rodenacker, K. & Hausner, M. In situ quantification of gene transfer in biofilms. Methods Enzymol. 336, 129–143 (2001). An automated method to quantify in situ gene-transfer frequencies in undisturbed cell aggregates. In situ HGT frequencies determined with this method can be orders of magnitude higher than average frequencies determined ex situ by plating transconjugants under selective growth conditions.

    CAS  PubMed  Google Scholar 

  65. Christensen, B. B. et al. Establishment of new genetic traits in a microbial biofilm community. Appl. Environ. Microbiol. 64, 2247–2255 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Melderen, L. Molecular interactions of the CcdB poison with its bacterial target, the DNA gyrase. Int. J. Med. Microbiol. 291, 537–544 (2002).

    CAS  PubMed  Google Scholar 

  67. Gerdes, K., Gultyaev, A. P., Franch, T., Pedersen, K. & Mikkelsen, N. D. Antisense RNA-regulated programmed cell death. Annu. Rev. Genet. 31, 1–31 (1997).

    CAS  PubMed  Google Scholar 

  68. Gerdes, K., Moller-Jensen, J., Ebersbach, G., Kruse, T. & Nordstrom, K. Bacterial mitotic machineries. Cell 116, 359–366 (2004).

    CAS  PubMed  Google Scholar 

  69. Easter, C. L., Schwab, H. & Helinski, D. R. Role of the parCBA operon of the broad-host-range plasmid RK2 in stable plasmid maintenance. J. Bacteriol. 180, 6023–6030 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Trevors, J. T., van Elsas, J. D., Starodub, M. E. & Van Overbeek, L. S. Survival of and plasmid stability in Pseudomonas and Klebsiella spp. introduced into agricultural drainage water. Can. J. Microbiol. 35, 675–680 (1989).

    CAS  PubMed  Google Scholar 

  71. van Elsas, J. D., Trevors, J. T., Van Overbeek, L. S. & Starodub, M. E. Survival of Pseudomonas fluorescens containing plasmids RP4 or pRK2501 and plasmid stability after introduction into two soils of different texture. Can. J. Microbiol. 35, 951–959 (1989).

    CAS  Google Scholar 

  72. Sobecky, P. A., Schell, M. A., Moran, M. A. & Hodson, R. E. Adaptation of model genetically engineered microorganisms to lake water: growth rate enhancements and plasmid loss. Appl. Environ. Microbiol. 58, 3630–3637 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lilley, A. K. & Bailey, M. J. Impact of plasmid pQBR103 acquisition and carriage on the phytosphere fitness of Pseudomonas fluorescens SBW25: burden and benefit. Appl. Environ. Microbiol. 63, 1584–1587 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lilley, A. K. et al. Population dynamics and gene transfer in genetically modified bacteria in a model microcosm. Mol. Ecol. 12, 3097–3107 (2003).

    CAS  PubMed  Google Scholar 

  75. Smalla, K. et al. PCR-based detection of mobile genetic elements in total community DNA. Microbiology 146, 1256–1257 (2000).

    CAS  PubMed  Google Scholar 

  76. Bahl, M. I., Sørensen, S. J. & Hestbjerg Hansen, L. Quantification of plasmid loss in Escherichia coli cells by use of flow cytometry. FEMS Microbiol. Lett. 232, 45–49 (2004).

    CAS  PubMed  Google Scholar 

  77. Stewart, F. M. & Levin, B. R. The population biology of bacterial plasmids. A priori conditions for the existence of conjugationally transmitted factors. Genetics 87, 209–228 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Levin, B. R., Stewart, F. M. & Rice, V. A. The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid 2, 247–260 (1979).

    CAS  PubMed  Google Scholar 

  79. Levin, B. R. & Rice, V. A. The kinetics of transfer of nonconjugative plasmids by mobilizing conjugative factors. Genet. Res. Comb. 35, 241–259 (1980).

    CAS  Google Scholar 

  80. Levin, B. R. & Stewart, F. M. The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors. Genetics 94, 425–443 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Simonsen, L., Gordon, D. M., Stewart, F. M. & Levin, B. R. Estimating the rate of plasmid transfer: an end-point method. J. Gen. Microbiol. 136, 2319–2325 (1990).

    CAS  PubMed  Google Scholar 

  82. Smets, B. F., Rittmann, B. E. & Stahl, D. A. The specific growth rate of Pseudomonas putida PAW1 influences the conjugal transfer rate of the TOL plasmid. Appl. Environ. Microbiol. 59, 3430–3437 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dionisio, F., Matic, I., Radman, M., Rodrigues, O. R. & Taddei, F. Plasmids spread very fast in heterogeneous bacterial communities. Genetics 162, 1525–1532 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gordon, D. M. Rate of plasmid transfer among Escherichia coli strains isolated from natural populations. J. Gen. Microbiol. 138, 17–21 (1992).

    CAS  PubMed  Google Scholar 

  85. Smets, B. F., Rittmann, B. E. & Stahl, D. A. Quantification of the effect of substrate concentration on the conjugal transfer rate of the TOL plasmid in short-term batch mating experiments. Lett. Appl. Microbiol. 21, 167–172 (1995).

    CAS  PubMed  Google Scholar 

  86. Smets, B. F., Rittmann, B. E. & Stahl, D. A. Stability and conjugal transfer kinetics of a TOL plasmid in Pseudomonas aeruginosa Pao-1162. FEMS Microbiol. Ecol. 15, 337–349 (1994).

    CAS  Google Scholar 

  87. Simonsen, L. Dynamics of plasmid transfer on surfaces. J. Gen. Microbiol. 136, 1001–1007 (1990).

    CAS  PubMed  Google Scholar 

  88. Lagido, C., Wilson, I. J., Glover, L. A. & Prosser, J. I. A model for bacterial conjugal gene transfer on solid surfaces. FEMS Microbiol. Ecol. 44, 67–78 (2003).

    CAS  PubMed  Google Scholar 

  89. Pinedo, C. A. & Smets, B. F. Conjugal TOL transfer from Pseudomonas putida to Pseudomonas aeruginosa: effects of restriction proficiency, toxicant exposure, cell density ratios, and conjugation detection method on observed transfer efficiencies. Appl. Environ. Microbiol. 71, 51–57 (2005).

    CAS  PubMed  Google Scholar 

  90. DeAngelis, D. L. & Gross, L. J. Individual-based models and approaches in ecology: Populations, communities and ecosystems (Chapman and Hall, New York, 1992).

    Google Scholar 

  91. Wimpenny, J. W. T. Microbial systems — patterns in time and space. Adv. Microb. Ecol. 12, 469–522 (1992).

    Google Scholar 

  92. Kreft, J. U., Picioreanu, C., Wimpenny, J. W. & van Loosdrecht, M. C. Individual-based modelling of biofilms. Microbiology 147, 2897–2912 (2001). A model to understand the emergence of complex biofilms. The IbM describes the actions and properties of the individual cells that comprise the community. The bacteria are modelled as discrete individuals of spherical shape that move in a continuous space.

    CAS  PubMed  Google Scholar 

  93. Kreft, J. U., Booth, G. & Wimpenny, J. W. BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287 (1998).

    CAS  PubMed  Google Scholar 

  94. Dejonghea, W. et al. Diversity of 3-chloroaniline and 3,4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation. FEMS Microb. Ecol. 42, 315–325 (2002).

    Google Scholar 

Download references

Acknowledgements

This research was partly supported by funding of Dr S.J. Sørensen and Dr N. Kroer by the Natural and Accelerated Bioremediation Research (NABIR) programme, Biological and Environmental Research (BER), US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren J. Sørensen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bacillus subtilis

Campylobacter jejuni

E. coli K12

Helicobacter pylori

Pseudomonas putida

Ralstonia metallidurans

Streptococcus pneumoniae

Thermus thermophilus

FURTHER INFORMATION

Søren Sørensen's homepage

Mark Bailey's homepage

Lars Hansen's homepage

Niels Kroer's homepage

Stefan Wuertz's homepage:

BacSim

Glossary

PATHOGENICITY ISLANDS

A contiguous block of genes acquired by horizontal transfer in which at least a subset of the genes code for virulence factors.

TRANSFORMATION

The uptake and incorporation of exogenous, 'naked' DNA directly from the environment.

TRANSDUCTION

The horizontal transfer of DNA mediated by bacteriophage.

CONJUGATION

The transfer of DNA between bacterial cells after cell–cell contact. Conjugation is mediated by mobile genetic elements (usually plasmids or transposons) and is unidirectional and conservative (a copy of the DNA remains in the donor strain)

TYPE IV SECRETION SYSTEM

A syringe-like proteinaceous machinery that can transport bacterial protein or DNA effector molecules directly into a eukaryotic cell.

TYPE II PROTEIN-EXPORT SYSTEMS

The type II protein-export system or secreton allows the energy-dependent secretion of specific proteins from the periplasm of Gram-negative bacteria.

TRANSCONJUGANTS

Bacterial recipient cells that have recieved a plasmid by the process of conjugation as indicated by molecular, phenotypic or microscopic analysis.

RHIZOSPHERE

The zone directly surrounding the roots of plants.

PHYLLOPLANE

The micro-environment on the leaf surface of plants.

VIABLE BUT NON-CULTURABLE

A hypothesis that assumes a physiological state of normally culturable bacteria in which they no longer grow on conventional media but remain intact and retain viability.

EPIFLUORESCENCE MICROSCOPY

A form of light microscopy that involves the detection of primary fluorescence or of specimens stained with fluorescent dyes.

MICROCOSM EXPERIMENTS

Experiments in scaled-down replicas of natural environments.

PHYTOSPHERE

All plant-associated environments, for example, rhizosphere or phylloplane.

HYPOCOTYL

The area of the plant-embryo axis below the area where cotyledons are attached that forms the primary root of a seedling.

EPILITHON

Biofilms attached to rocks in rivers and streams.

STOMATA

Pores on the underside of leaves, which enable gas exchanges. They can be either opened or closed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sørensen, S., Bailey, M., Hansen, L. et al. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3, 700–710 (2005). https://doi.org/10.1038/nrmicro1232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1232

  • Springer Nature Limited

This article is cited by

Navigation