Skip to main content

Advertisement

Log in

Mechanisms of human lymphoid chromosomal translocations

  • Review Article
  • Published:

From Nature Reviews Cancer

View current issue Sign up to alerts

Key Points

  • Neoplastic chromosomal translocations (and other pathological chromosomal rearrangements) can be considered in terms of a breakage phase, in which broken duplex DNA ends are generated, and then a rejoining phase. The rejoining phase is carried out by the non-homologous DNA end-joining (NHEJ) pathway.

  • In B lymphoid neoplasms, the breakage phase is often initiated by the activation-induced deaminase (AID) on the chromosome bearing the oncogene and the recombination activating gene (RAG) complex, comprised of RAG1 and RAG2, on the IgH chromosome. In T lymphoid neoplasms, the RAG complex is often responsible for the DNA breakage phase on both chromosomes.

  • For B lymphoid neoplasms, the chromosome break sites are often in hot spots, and the breaks are often near CG (that is, CpG sites) or WGCW (where W = A or T) motifs, which are sites at which AID can initiate lesions that lead to double-strand DNA breaks. AID is known to deaminate only cytosines that are within single-stranded DNA (ssDNA) regions.

  • The ssDNA in the hot spots may have various causes, which are still under investigation, such as transcriptionally induced topological tension, R-loop formation or some type of strand slippage at short repeat sequences. Concurrent expression of a low level of AID in pre-B cells, along with the usual high expression level of the RAG complex, permits translocation events in human cells in which a RAG-generated break is joined to an AID-initiated break.

  • Examples of RAG–AID-induced translocations in humans include t(14;18) translocation involving the immunoglobulin heavy (IGH) locus and the BCL2 gene. The t(11;14) translocation involving the IGH locus and the BCL1 locus (which is close to the cyclin D1 (CCND1) gene) is another example of a translocation that occurs in human lymphomas.

  • The principles discerned from lymphoid translocations are useful for considering the mechanism of chromosomal rearrangements and translocations generally. In particular, sequence motif analysis may be generally useful for assessing translocations in non-lymphoid cancer cells.

Abstract

Analysis of chromosomal translocation sequence locations in human lymphomas has provided valuable clues about the mechanism of the translocations and when they occur. Biochemical analyses on the mechanisms of DNA breakage and rejoining permit formulation of detailed models of the human chromosomal translocation process in lymphoid neoplasms. Most human lymphomas are derived from B cells in which a DNA break at an oncogene is initiated by activation-induced deaminase (AID). The partner locus in many cases is located at one of the antigen receptor loci, and this break is generated by the recombination activating gene (RAG) complex or by AID. After breakage, the joining process typically occurs by non-homologous DNA end-joining (NHEJ). Some of the insights into this mechanism also apply to translocations that occur in non-lymphoid neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Causes and repair of double-strand DNA breaks.
Figure 2: Common chromosomal translocations in T and B cells.
Figure 3: A high proportion of breakpoints on BCL2, BCL1 and E2A fall into fragile regions that are smaller than 600 bp.
Figure 4: Timing of chromosomal translocations as a function of B-cell development.
Figure 5: Fraction of human haematopoietic malignancies explained by AID-type breaks.

Similar content being viewed by others

References

  1. Tsai, A. G. et al. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 135, 1130–1142 (2008). The CpG sequence motif is decribed here as a site of translocation breakage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahowald, G. K., Baron, J. M. & Sleckman, B. P. Collateral damage from antigen receptor gene diversification. Cell 135, 1009–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Gostissa, M., Alt, F. W. & Chiarle, R. Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu. Rev. Immunol. 29, 319–350 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Nussenzweig, A. & Nussenzweig, M. C. Origin of chromosomal translocations in lymphoid cancer. Cell 141, 27–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Atlas of Genetics and Cytogenetics in Oncology and Haematology http://atlasgeneticsoncology.org/ (2016).

  6. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boboila, C., Alt, F. W. & Schwer, B. Classical and alternative end-joining pathways for repair of lymphocyte-specific and general DNA double-strand breaks. Adv. Immunol. 116, 1–49 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Tsai, A. G. & Lieber, M. R. Mechanisms of chromosomal rearrangement in the human genome. BMC Genomics 11 (Suppl. 1), S1 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lieber, M. R., Gu, J., Lu, H., Shimazaki, N. & Tsai, A. G. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell. Biochem. 50, 279–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landau, N. R., Schatz, D. G., Rosa, M. & Baltimore, D. Increased frequency of N-region insertion in a murine pre-B-cell line infected with a terminal deoxynucleotidyl transferase retroviral expression vector. Mol. Cell. Biol. 7, 3237–3243 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gauss, G. H. & Lieber, M. R. Mechanistic constraints on diversity in human V(D)J recombination. Mol. Cell. Biol. 16, 258–269 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Komori, T., Okada, A., Stewart, V. & Alt, F. W. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261, 1171–1175 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Pannunzio, N. R., Li, S., Watanabe, G. & Lieber, M. R. Non-homologous end joining often uses microhomology: implications for alternative end joining. DNA Repair (Amst.) 17, 74–80 (2014).

    Article  CAS  Google Scholar 

  14. Ghezraoui, H. et al. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol. Cell 55, 829–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jaeger, U. et al. Follicular lymphomas BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 95, 3520–3529 (2000). This is the first description of templated nucleotides at chromosomal translocation junctions.

    Google Scholar 

  16. Welzel, N. et al. Templated nucleotide addition and immunoglobulin JH-gene utilization in t(11;14) junctions: implications for the mechanism of translocation and the origin of mantle cell lymphoma. Cancer Res. 61, 1629–1636 (2001).

    CAS  PubMed  Google Scholar 

  17. Tsai, A. G., Lu, Z. & Lieber, M. R. The t(14;18)(q32;q21)/IGH-MALT1 translocation in MALT lymphomas is a CpG-type translocation, but the t(11;18)(q21;q21)/API2-MALT1 translocation in MALT lymphomas is not. Blood 115, 3640–3641; author reply 3641–3642 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsai, A. G., Yoda, A., Weinstock, D. M. & Lieber, M. R. t(X;14)(p22;q32)/t(Y;14)(p11;q32) CRLF2-IGH translocations from human B-lineage ALLs involve CpG-type breaks at CRLF2, but CRLF2/P2RY8 intrachromosomal deletions do not. Blood 116, 1993–1994 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greisman, H. A. et al. IgH partner breakpoint sequences provide evidence that AID initiates t(11;14) and t(8;14) chromosomal breaks in mantle cell and Burkitt lymphomas. Blood 120, 2864–2867 (2012). This study describes the occurrence of WGCW motifs at human translocations and thus directly implicates AID as initiating the lesions that lead to the breaks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, Z. et al. BCL6 breaks occur at different AID sequence motifs in Ig-BCL6 and non-Ig-BCL6 rearrangements. Blood 121, 4551–4554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Swerdlow, S. H. et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (WHO Press, 2008). This is the gold standard for human haematopathology.

    Google Scholar 

  22. Stavnezer, J., Guikema, J. E. & Schrader, C. E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaudhuri, J. et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv. Immunol. 94, 157–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, K. & Lieber, M. R. Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. DNA Repair 2, 1163–1174 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kuppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008). This is the first paper to implicate AID as the cause of Myc translocations in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pham, P., Bransteitter, R., Petruska, J. & Goodman, M. F. Processive AID-catalyzed cytosine deamination on single-stranded DNA stimulates somatic hypermutation. Nature 424, 103–107 (2003). This paper describes the behaviour of AID on ssDNA templates.

    Article  CAS  PubMed  Google Scholar 

  28. Yu, K., Huang, F. T. & Lieber, M. R. DNA substrate length and surrounding sequence affect the activation induced deaminase activity at cytidine. J. Biol. Chem. 279, 6496–6500 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Han, L., Masani, S. & Yu, K. Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination. Proc. Natl Acad. Sci. USA 108, 11584–11589 (2011). This is the first paper to demonstrate that Ig CSR-associated breaks occur preferentially at WGCW sites.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003). This is the first paper to demonstrate that cytosine deamination by AID requires that the cytosine be within ssDNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui, X. et al. Both CpG methylation and AID are required for the fragility of the human Bcl-2 major breakpoint region: implications for the timing of the breaks in the t(14;18). Mol. Cell. Biol. 33, 947–957 (2013). This paper provides molecular support for a model in which AID acts at methylated CpG sites within the BCL2 MBR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roukos, V. et al. Spatial dynamics of chromosome translocations in living cells. Science 341, 660–664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reid, D. A. et al. Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. Proc. Natl Acad. Sci. USA 112, E2575–E2584 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Swaminathan, S. et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat. Immunol. 16, 766–774 (2015). This paper provides evidence in both human and mouse pre-B cells for concurrent expression and action of AID and the RAG complex to cause chromosome translocations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aplan, P. D. et al. Disruption of the human SCL locus by illegitimate V-(D)-J recombinase activity. Science 250, 1426–1429 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Kirsch, I. R. (ed.) The Causes and Consequences of Chromosomal Translocations (CRC, 1993).

    Google Scholar 

  37. Kitagawa, Y. et al. Prevalent involvement of illegitimate V(D)J recombination in chromosome 9p21 deletions in lymphoid leukemia. J. Biol. Chem. 277, 46289–46297 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Mahowald, G. K. et al. Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in cis. Proc. Natl Acad. Sci. USA 106, 18339–18344 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Askary, A., Shimazaki, N., Bayat, N. & Lieber, M. R. Modeling of the RAG reaction mechanism. Cell Rep. 7, 307–315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu, J. et al. Chromosomal loop domains direct the recombination of antigen receptor genes. Cell 163, 947–959 (2015). This study in mice describes the chromatin conditions necessary for RAG-mediated chromosome translocations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Helmink, B. A. & Sleckman, B. P. The response to and repair of RAG-mediated DNA double-strand breaks. Annu. Rev. Immunol. 30, 175–202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deriano, L. et al. The RAG2 C terminus suppresses genomic instability and lymphomagenesis. Nature 471, 119–123 (2011). This paper describes how the C terminus of RAG2 is important to minimize off-target action by the RAG complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raghavan, S. C., Kirsch, I. R. & Lieber, M. R. Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J. Biol. Chem. 276, 29126–29133 (2001). This paper analyses human fragile sites where RAG complex activity occurs.

    Article  CAS  PubMed  Google Scholar 

  44. Weigert, O. & Weinstock, D. M. The evolving contribution of hematopoietic progenitor cells to lymphomagenesis. Blood 120, 2553–2561 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6–RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014). This paper shows that ongoing RAG expression in human cells containing an initial genetic lesion ( ETV6–RUNX1 ) can result in chromosome translocations that cause progression to pre-B-ALL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shinkura, R. et al. The influence of transcriptional orientation on endogenous switch region function. Nat. Immunol. 4, 435–441 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Z. Z. et al. The strength of an Ig switch region is determined by its ability to drive R loop formation and its number of WGCW sites. Cell Rep. 8, 557–569 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, Z. Z., Pannunzio, N. R., Hsieh, C. L., Yu, K. & Lieber, M. R. The role of G-density in switch region repeats for immunoglobulin class switch recombination. Nucleic Acids Res. 42, 13186–13193 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu, K., Chedin, F., Hsieh, C.-L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003). The first kilobase nuclear R-loops in eukaryotes are described.

    Article  CAS  PubMed  Google Scholar 

  50. Casellas, R., Resch, W., Hakim, O. & Nussenzweig, M. C. The origin of B cell recurrent chromosomal translocations: proximity versus DNA damage. Mol. Cell 51, 275–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, Y. et al. Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Mol. Cell 53, 484–497 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Phillips, D. D. et al. The sub-nanomolar binding of DNA–RNA hybrids by the single-chain Fv fragment of antibody S9.6. J. Mol. Recognit. 26, 376–381 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Z. Z., Pannunzio, N. R., Hsieh, C.-L., Yu, K. & Lieber, M. R. Complexities due to single-stranded RNA during antibody detection of genomic RNA:DNA hybrids. BMC Res. Notes 8, 127 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kouzine, F., Sanford, S., Elisha-Feil, Z. & Levens, D. The functional response of upstream DNA to dynamic supercoiling in vivo. Nat. Struct. Mol. Biol. 15, 146–154 (2008). Here, transcription-driven topological effects in the genome of mammalian cells are described, supporting the twin-domain model for transcription in supercoiling of DNA.

    Article  CAS  PubMed  Google Scholar 

  56. Meng, F. L. et al. Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 159, 1538–1548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pefanis, E. et al. Noncoding RNA transcription targets AID to divergently transcribed loci in murine B cells. Nature 514, 389–393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu, Z. et al. Convergent BCL6 and lncRNA promoters demarcate the major breakpoint region for BCL6 translocations. Blood 126, 1730–1731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pannunzio, N. R. & Lieber, M. R. Dissecting the roles of divergent and convergent transcription in chromosome instability. Cell Rep. 14, 1025–1031 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mao, C. et al. T cell-independent somatic hypermutation in murine B cells with an immature phenotype. Immunity 20, 133–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Han, J. H. et al. Class switch recombination and somatic hypermutation in early mouse B cells are mediated by B cell and Toll-like receptors. Immunity 27, 64–75 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ueda, Y., Liao, D., Yang, K., Patel, A. & Kelsoe, G. T-independent activation-induced cytidine deaminase expression, class-switch recombination, and antibody production by immature/transitional 1 B cells. J. Immunol. 178, 3593–3601 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Kuraoka, M. et al. Activation-induced cytidine deaminase mediates central tolerance in B cells. Proc. Natl Acad. Sci. USA 108, 11560–11565 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kuraoka, M. et al. Activation-induced cytidine deaminase expression and activity in the absence of germinal centers: insights into hyper-IgM syndrome. J. Immunol. 183, 3237–3248 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Kumar, S. et al. Flexible ordering of antibody class switch and V(D)J joining during B-cell ontogeny. Genes Dev. 27, 2439–2444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Umiker, B. R. et al. Production of IgG autoantibody requires expression of activation-induced deaminase in early-developing B cells in a mouse model of SLE. Eur. J. Immunol. 44, 3093–3108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kelsoe, G. Curiouser and curiouser: the role(s) of AID expression in self-tolerance. Eur. J. Immunol. 44, 2876–2879 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Cantaert, T. et al. Activation-induced cytidine deaminase expression in human B cell precursors is essential for central B cell tolerance. Immunity 43, 884–895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Alt, F. W., Zhang, Y., Meng, F. L., Guo, C. & Schwer, B. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 152, 417–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Roukos, V. & Misteli, T. The biogenesis of chromosome translocations. Nat. Cell Biol. 16, 293–300 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qian, J. et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159, 1524–1537 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kovalchuk, A. L. et al. Mouse model of endemic Burkitt translocations reveals the long-range boundaries of Ig-mediated oncogene deregulation. Proc. Natl Acad. Sci. USA 109, 10972–10977 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chiarle, R. et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell 147, 107–119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barlow, J. H. et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620–632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Durkin, S. G. & Glover, T. W. Chromosome fragile sites. Annu. Rev. Genet. 41, 169–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Look, A. T. Oncogenic transcription factors in human acute leukemias. Science 278, 1059–1064 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Korsmeyer, S. J. Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Annu. Rev. Immunol. 10, 785–807 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Hunger, S. P. et al. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 77, 687–693 (1991).

    CAS  PubMed  Google Scholar 

  79. LeBrun, D. P. & Cleary, M. L. Fusion with E2A alters the transcriptional properties of the homeodomain protein PBX1 in t(1;19) leukemias. Oncogene 9, 1641–1647 (1994).

    CAS  PubMed  Google Scholar 

  80. Monica, K., LeBrun, D. P., Dedera, D. A., Brown, R. & Cleary, M. L. Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable. Mol. Cell. Biol. 14, 8304–8314 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nourse, J. et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60, 535–545 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Kamps, M. P., Murre, C., Sun, X. H. & Baltimore, D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60, 547–555 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Murre, C., McCaw, P. S. & Baltimore, D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56, 777–783 (1989).

    Article  CAS  PubMed  Google Scholar 

  84. Wiemels, J. L. et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 99, 15101–15106 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Heisterkamp, N. & Groffen, J. Philadelphia-positive leukemia: a personal perspective. Oncogene 21, 8536–8540 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Groffen, J. & Heisterkamp, N. C. Philadelphia chromosome translocation. Crit. Rev. Oncog. 1, 53–64 (1989).

    CAS  PubMed  Google Scholar 

  87. Heisterkamp, N., Stam, K., Groffen, J., de Klein, A. & Grosveld, G. Structural organization of the bcr gene and its role in the Ph′ translocation. Nature 315, 758–761 (1985).

    Article  CAS  PubMed  Google Scholar 

  88. Heisterkamp, N. et al. Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306, 239–242 (1983).

    Article  CAS  PubMed  Google Scholar 

  89. Van der Feltz, M. J. et al. Nucleotide sequence of both reciprocal translocation junction regions in a patient with Ph positive acute lymphoblastic leukaemia, with a breakpoint within the first intron of the BCR gene. Nucleic Acids Res. 17, 1–10 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rocha, P. P. et al. Close proximity to IgH is a contributing factor to AID-mediated translocations. Mol. Cell 47, 873–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rocha, P. P. et al. Response to Casellas et al. Mol. Cell 51, 277–278 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Masani, S., Han, L. & Yu, K. Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Mol. Cell. Biol. 33, 1468–1473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu, K., Roy, D., Bayramyan, M., Haworth, I. S. & Lieber, M. R. Fine-structure analysis of activation-induced deaminase accessbility to class switch region R-loops. Mol. Cell. Biol. 25, 1730–1736 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cancer facts & figures 2009. American Cancer Society http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2009/index (2009).

Download references

Acknowledgements

The author thanks R. Mosteller and I. Siddiqi for comments on the manuscript. Work in the author's laboratory is supported by the US National Institutes of Health (NIH). Many collaborators as well as members of the Lieber laboratory were central to the work leading to this review. Z. Lu compiled the information leading to Figure 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Lieber.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

FURTHER INFORMATION

American Cancer Society

PowerPoint slides

Supplementary information

41568_2016_BFnrc201640_MOESM263_ESM.pdf

Supplementary information S1 (figure) | Loading of Enzymatic Activities at the Two DNA Ends in the Nonhomologous DNA End Joining Pathway. (PDF 156 kb)

Supplementary information S2 (figure) | Resection of the Two DNA Ends at a DSB Prior to NHEJ. (PDF 236 kb)

Supplementary information S3 (figure) | Developmental Expression of RAG and AID. (PDF 106 kb)

Supplementary information S4 (figure) | Diagram of the c-MYC Translocation. (PDF 155 kb)

41568_2016_BFnrc201640_MOESM267_ESM.pdf

Supplementary information S5 (figure) | CG and GC Pack C's Across from One Another in a DNA Duplex Making These Sites Vulnerable to Double-Strand Breakage. (PDF 131 kb)

Supplementary information S6 (figure) | Three Mechanisms for Generating AID-Type Double-Strand Breaks. (PDF 127 kb)

Supplementary information S7 (figure) | BCL-6 translocation breakpoints in human B-cell lymphomas. (PDF 178 kb)

Glossary

Lymphoid neoplasms

Malignancies of B or T cells. If the malignant cells are primarily in the spleen, lymph nodes or other peripheral lymphoid tissues, they are lymphomas. If the malignant cells are primarily in the blood and bone marrow, they are called lymphoid leukaemias. Acute lymphoblastic leukaemia (ALL) can be considered both a lymphoma and a leukaemia in humans.

Activation-induced deaminase

(AID). A cytidine deaminase that converts C to T (or methyl-C to U) in B cells of all vertebrates when it is expressed (predominantly in germinal centres, but at low levels in pre-B cells). AID is not expressed in T cells.

Recombination activating gene (RAG) complex

Antigen receptors of the vertebrate immune system rely on RAG1 and RAG2, which form the RAG complex, which creates double-strand DNA breaks at specific sequences called recombination signal sequences (RSSs).

Reciprocal translocations

These are stable only if each derivative chromosome has one centromere; otherwise, one chromosome is lost due to lack of a centromere, and the other chromosome suffers repeated breakage–fusion–bridge cycles.

Non-homologous DNA end-joining

(NHEJ). Major pathway for repairing double-strand DNA breaks that do not have homology between them (although shared microhomology of 1–3 bp between the two DNA ends is often used during the joining process).

V(D)J recombination

The DNA recombination process in pro-B, pre-B, pro-T and pre-T cells by which the variable domain exons of antigen receptors are assembled from subexonic segments called V, D and J to generate a complete T cell receptor or immunoglobulin gene.

Alternative DNA end-joining

(a-EJ, alt-EJ, alt-NHEJ or a-NHEJ). Classical or canonical NHEJ (c-NHEJ) can have a few nucleotides of microhomology (usually 0–3 bp). Longer regions of microhomology (for example, >3 bp) are joined in a manner that is less reliant on most of the NHEJ factors, and any ligase (ligase 1, 3 or 4) will suffice. Whether a-EJ is a separate pathway or simply substitution of ligase 1 or 3 for ligase 4 in the joining of ends that anneal well due to >3 bp of terminal homology is not yet certain.

DNA nick

Within duplex DNA, a break in the phosphodiester backbone of one strand but not the other is called a nick. A ligatable nick has a 5′-phosphate and a 3′OH.

Fragile sites

Some regions of DNA in the human genome are 10- to 1,000-fold more likely to be a site of breakage or trans- location. The fragile sites or zones in this Review occur in otherwise normal patients and these fragile sites or zones are 20–2,000 bp in length. These naturally occurring sites are to be distinguished from the fragile sites or FRA sites that can be induced by DNA polymerase chain terminators or poisons such as hydroxyurea, because these are 300,000 to 10,000,000 bp in length.

Immunoglobulin heavy (IGH) locus class switch recombination

The DNA recombination process by which the heavy chain isotype is changed from making IgM to making IgG, IgA or IgE.

V, D or J segments

Portions of a complete variable domain exon. I call these subexons. The V, D and J segments have recombination signal sequences (RSSs) located next to them to enable the recombination activating gene (RAG) complex to bind and cut to initiate the V(D)J recombination process.

Recombination signal sequence

(RSS). RSSs are the targeting sequences next to V, D and J segments for RAG complex binding; an RSS consists of a palindromic heptamer (CACAGTG) and an AT-rich nonamer (ACAAAAACA) separated by 12 or 23 bp.

Germinal centres

When B cells in the peripheral lymphoid tissues (for example, lymph node, spleen or Peyer's patches) proliferate in response to a specific antigen or antigenic hapten, then a sphere of cells results that is surrounded by B and T cells. These spheres or balls of B cells are called germinal centres. Activation-induced deaminase (AID) levels are high in the B cells within a germinal centre, resulting in immunoglobulin heavy chain class switch recombination and somatic hypermutation.

Peyer's patches

Gut-associated lymphoid tissue (GALT) within the ileum of the small intestine, which can form germinal centres.

Minichromosomes

In experimental systems, stable replicating plasmids are called minichromosomes. In human cells, Epstein–Barr virus (EBV) or simian virus 40 (SV40) origins of replication can drive replication of these minichromosomes with the help of the EBNA1 protein or SV40 large T antigen helicase, respectively. In mouse or rat cells, the polyoma virus origin of replication can serve this purpose, with the support of the polyoma large T antigen helicase.

Pseudo-RSS

A sequence that is similar to a recombination signal sequence (RSS), in having sequences that bear some similarity to the RSS heptamer and nonamer. A pseudo-RSS is not adjacent to a V, D or J segment, and thus has no function. But the RAG complex can cut at a pseudo-RSS to cause a deletion or translocation.

R-loop

Sequences that are G-rich on the non-template strand generate a corresponding G-rich RNA that can anneal back to the template strand while the RNA polymerase is still transcribing. This can result in long R-loops of lengths up to >1 kb. Documented R-loops at the immunoglobulin heavy locus (IGH) switch regions have been demonstrated by functional assays, by chemical probing using bisulfite and by immunoprecipitation using an antibody (S9.6 antibody after RNase A treatment to remove free RNA).

Divergently directed transcription

Two promoters can be close to one another and directing transcription away from one another. Approximately 10–20% of the human genome has divergently directed promoters, depending on non-coding RNAs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lieber, M. Mechanisms of human lymphoid chromosomal translocations. Nat Rev Cancer 16, 387–398 (2016). https://doi.org/10.1038/nrc.2016.40

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.40

  • Springer Nature Limited

This article is cited by

Navigation