Skip to main content
Log in

Skyrmions on the track

  • Commentary
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

Magnetic skyrmions are nanoscale spin configurations that hold promise as information carriers in ultradense memory and logic devices owing to the extremely low spin-polarized currents needed to move them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Spins in a skyrmion.
Figure 2: Detection of skyrmions and a phase diagram.
Figure 3: Skyrmion velocity.

References

  1. Skyrme, T. H. R. Nucl. Phys. 31, 556–569 (1962).

    Article  CAS  Google Scholar 

  2. Mühlbauer, S. et al. Science 323, 915–919 (2009).

    Article  Google Scholar 

  3. Neubauer, A. et al. Phys. Rev. Lett. 102, 186602 (2009).

    Article  CAS  Google Scholar 

  4. Pappas, C. et al. Phys. Rev. Lett. 102, 197202 (2009).

    Article  CAS  Google Scholar 

  5. Parkin, S. S. P., Hayasi, M. & Thomas, L. Science 320, 197202 (2009).

    Google Scholar 

  6. Röβler, U. K., Bogdanov, A. N. & Pfleiderer, C. Nature 442, 797–801 (2006).

    Article  Google Scholar 

  7. Dzyaloshinskii, I. E. J. Phys. Chem. Sol. 4, 241–255 (1958).

    Article  Google Scholar 

  8. Moriya, T. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  9. Crépieux, A. & Lacroix, C. J. Magn. Magn. Mater. 182, 341–349 (1998).

    Article  Google Scholar 

  10. Fert, A. Mater. Sci. Forum 59–60, 439–480 (1990).

    Google Scholar 

  11. Fert, A. & Levy, P. M. Phys. Rev. Lett. 44, 1538–1541 (1980).

    Article  CAS  Google Scholar 

  12. Heinze, S. et al. Nature Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  13. Yu, X. Z. et al. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  14. Münzer, W. et al. Phys. Rev. B 81, 041203(R) (2010).

    Article  Google Scholar 

  15. Yu, X. Z. et al. Nature Mater. 10, 106–109 (2011).

    Article  CAS  Google Scholar 

  16. Huang, S. X. & Chien, C. L. Phys. Rev. Lett. 108, 267201 (2012).

    Article  CAS  Google Scholar 

  17. Seki, S. et al. Science 336, 198–201 (2012).

    Article  CAS  Google Scholar 

  18. Raicevic, I. et al. Phys. Rev. Lett. 106, 227206 (2011).

    Article  CAS  Google Scholar 

  19. Schulz, T. et al. Nature Phys. 8, 301–304 (2012).

    Article  CAS  Google Scholar 

  20. Bauer, A. & Pfleiderer, C. Phys. Rev. B 85, 214418 (2012).

    Article  Google Scholar 

  21. Ferriani, P. et al. Phys. Rev. Lett. 101, 027201 (2008).

    Article  CAS  Google Scholar 

  22. Jonietz, F. et al. Science 330, 1648–1651 (2010).

    Article  CAS  Google Scholar 

  23. Yu, X. Z. et al. Nature Commun. 3, 988 (2012).

    Article  CAS  Google Scholar 

  24. Everschor, K. Current-Induced Dynamics of Chiral Magnetic Structures : Skyrmions, Emergent Electrodynamics and Spin-Transfer Torques. PhD thesis, University of Köln, Germany (2012).

  25. Everschor, K. et al. Phys. Rev. B 86, 054432 (2012).

    Article  Google Scholar 

  26. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Nature Commun. 4, 1463 (2013).

    Article  Google Scholar 

  27. Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rössler, U. K. J. Phys. D 44, 392001 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of S. Rohart and A. Thiaville from LPS (Université Paris-Sud/CNRS), Orsay, France for the numerical calculations of Fig. 3, and K. Everschor who helped in the preparation of some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Fert.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nature Nanotech 8, 152–156 (2013). https://doi.org/10.1038/nnano.2013.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.29

  • Springer Nature Limited

This article is cited by

Navigation