Skip to main content
Log in

Reversible labeling of native and fusion-protein motifs

  • Brief Communication
  • Published:

From Nature Methods

View current issue Submit your manuscript

Abstract

The reversible covalent attachment of chemical probes to proteins has long been sought as a means to visualize and manipulate proteins. Here we demonstrate the full reversibility of post-translational custom pantetheine modification of Escherichia coli acyl carrier protein for visualization and functional studies. We use this iterative enzymatic methodology in vitro to reversibly label acyl carrier protein variants and apply these tools to NMR structural studies of protein-substrate interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Reversible labeling of E. coli ACP.
Figure 2: Gel detection of reversible ACP labeling.
Figure 3: HSQC spectra of recycled [15N]ACP in various acyl states overlaid with apo-[15N]ACP.

Similar content being viewed by others

References

  1. Luchansky, S.J., Argade, S., Hayes, B.K. & Bertozzi, C.R. Biochemistry 43, 12358–12366 (2004).

    Article  CAS  Google Scholar 

  2. Stachler, M.D., Chen, I., Ting, A.Y. & Bartlett, J.S. Mol. Ther. 16, 1467–1473 (2008).

    Article  CAS  Google Scholar 

  3. Batra, G. et al. Protein Expr. Purif. 74, 99–105 (2010).

    Article  CAS  Google Scholar 

  4. Gauchet, C., Labadie, G.R. & Poulter, C.D. J. Am. Chem. Soc. 128, 9274–9275 (2006).

    Article  CAS  Google Scholar 

  5. Hinner, M.J. & Johnsson, K. Curr. Opin. Biotechnol. 21, 766–776 (2010).

    Article  CAS  Google Scholar 

  6. Yin, J. et al. Proc. Natl. Acad. Sci. USA 102, 15815–15820 (2005).

    Article  CAS  Google Scholar 

  7. Mosiewicz, K.A., Johnsson, K. & Lutolf, M.P. J. Am. Chem. Soc. 132, 5972–5974 (2010).

    Article  CAS  Google Scholar 

  8. Wong, L.S., Thirlway, J. & Micklefield, J. J. Am. Chem. Soc. 130, 12456–12464 (2008).

    Article  CAS  Google Scholar 

  9. Foley, T.L., Young, B.S. & Burkart, M.D. FEBS J. 276, 7134–7145 (2009).

    Article  CAS  Google Scholar 

  10. Meier, J.L. et al. ACS Chem. Biol. 4, 948–957 (2009).

    Article  CAS  Google Scholar 

  11. Meier, J.L., Haushalter, R.W. & Burkart, M.D. Bioorg. Med. Chem. Lett. 20, 4936–4939 (2010).

    Article  CAS  Google Scholar 

  12. Haushalter, R.W. et al. ACS Chem. Biol. 6, 413–418 (2011).

    Article  CAS  Google Scholar 

  13. Murugan, E., Kong, R., Sun, H., Rao, F. & Liang, Z.-X. Protein Expr. Purif. 71, 132–138 (2010).

    Article  CAS  Google Scholar 

  14. Quadri, L.E. et al. Biochemistry 37, 1585–1595 (1998).

    Article  CAS  Google Scholar 

  15. Chan, D.I. & Vogel, H.J. Biochem. J. 430, 1–19 (2010).

    Article  CAS  Google Scholar 

  16. Evans, S.E. et al. J. Mol. Biol. 389, 511–528 (2009).

    Article  CAS  Google Scholar 

  17. Płoskoń, E. et al. Chem. Biol. 17, 776–785 (2010).

    Article  Google Scholar 

  18. Roujeinikova, A. et al. J. Mol. Biol. 365, 135–145 (2007).

    Article  CAS  Google Scholar 

  19. Roujeinikova, A. et al. Structure 10, 825–835 (2002).

    Article  CAS  Google Scholar 

  20. Upadhyay, S.K. et al. J. Biol. Chem. 284, 22390–22400 (2009).

    Article  CAS  Google Scholar 

  21. Kitagawa, M. et al. DNA Res. 12, 291–299 (2005).

    Article  CAS  Google Scholar 

  22. Lambalot, R.H. & Walsh, C.T. J. Biol. Chem. 270, 24658–24661 (1995).

    Article  CAS  Google Scholar 

  23. Foley, T.L. & Burkart, M.D. Anal. Biochem. 394, 39–47 (2009).

    Article  CAS  Google Scholar 

  24. Foley, T.L. et al. Org. Biomol. Chem. 8, 4601–4606 (2010).

    Article  CAS  Google Scholar 

  25. Worthington, A.S. & Burkart, M.D. Org. Biomol. Chem. 4, 44–46 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank (all from UCSD) T.L. Foley for preparing rhodamine-CoA, coumarin-CoA and coumarin-ACP standard; S. Mayfield for providing the luciferase plasmid template; S. Duan for laboratory support; M. Rothmann for assisting with AcpH method development; R. Tsien for use of GFP-related gel-imaging equipment; the UCSD Chemistry & Biochemistry Mass Spectrometry Facility; and J. La Clair for manuscript design input. This research was funded by US National Institutes of Health grants R21AI090213, R01GM094924 and R01GM095970.

Author information

Authors and Affiliations

Authors

Contributions

N.M.K. performed all cloning, subcloning, enzymatic reactions, imaging and protein purifications (unless otherwise stated). R.W.H. conducted all protein NMR experiments and provided resulting NMR data. R.W.H. prepared the native Sfp, MBP-CoaA,D,E enzyme stocks used for 'one-pot' chemoenzymatic CoA analog synthesis. A.R.S. synthesized, purified and characterized all oxopantetheine probes in this work. N.M.K., R.W.H., A.R.S. and M.D.B. wrote the manuscript.

Corresponding author

Correspondence to Michael D Burkart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–42, Supplementary Tables 1 and 2, Supplementary Methods and Supplementary Note (PDF 5310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosa, N., Haushalter, R., Smith, A. et al. Reversible labeling of native and fusion-protein motifs. Nat Methods 9, 981–984 (2012). https://doi.org/10.1038/nmeth.2175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2175

  • Springer Nature America, Inc.

This article is cited by

Navigation