Skip to main content
Log in

To use or not to use cool superconductors?

  • Commentary
  • Published:

From Nature Materials

View current issue Submit your manuscript

The high critical temperature and magnetic field in cuprates and Fe-based superconductors are not enough to assure applications at higher temperatures. Making these superconductors useful involves complex and expensive technologies to address many conflicting physics and materials requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Comparative T-H phase diagram for different superconducting materials.
Figure 2: Weak-link behaviour of grain boundaries in FBS and the cuprates.
Figure 3: A typical architecture of a coated conductor made by ion-beam-assisted deposition5.

References

  1. Onnes, H. K. Comm. Phys. Lab. Univ. Leiden 133–144 (Suppl. 34b), 37 (1913).

    Google Scholar 

  2. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Phys. Rev. 108, 1175–1204 (1957).

    Article  CAS  Google Scholar 

  3. Tinkham, M. Introduction to Superconductivity (Mc-Grow Hill Inc., 1996).

    Google Scholar 

  4. Larbalestier, D., Gurevich, A., Feldmann, D. M. & Polyanskii, A. Nature 414, 368–377 (2001).

    Article  CAS  Google Scholar 

  5. Basic Research Needs for Superconductivity: Report of the Basic Energy Sciences Workshop on Superconductivity (Argonne National Laboratory, May 2006); available at http://www.sc.doe.gov/bes/reports/files/SC_rpt.pdf.

  6. Maple, M. B., Bauer, E. D., Zapf, V. S. & Wosnitza, J. in Superconductivity Vol. 1: Conventional and Unconventional Superconductors (eds Bennemann, K. H. & Ketterson, J. D.) 639–744, (Springer-Verlag, 2008).

    Book  Google Scholar 

  7. Malozemoff, A. P. Nature Mater. 6, 617–619 (2007).

    Article  CAS  Google Scholar 

  8. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  9. Johnston, D. C. Adv. Phys. 59, 803–1061 (2010).

    Article  CAS  Google Scholar 

  10. Putti, M. et al. Supercond. Sci. Technol. 23, 034003 (2010).

    Article  Google Scholar 

  11. Mazin, I. I. & Schmalian, J. Physica C 469, 614–629 (2009).

    Article  CAS  Google Scholar 

  12. Haugan, T. J., Barnes, P. N., Wheeler, R., Meisenkothen, F. & Sumption, M. D. Nature 430, 867–870 (2004).

    Article  CAS  Google Scholar 

  13. Mele, P. et al. Supercond. Sci. Technol. 19, 44–50 (2006).

    Article  CAS  Google Scholar 

  14. Kang, S. et al. Science 311, 1911–1914 (2006).

    Article  CAS  Google Scholar 

  15. Gutierrez, J. et al. Nature Mater. 6, 367–373 (2007).

    Article  CAS  Google Scholar 

  16. Maiorov, B. et al. Nature Mater. 8, 398–404 (2009).

    Article  CAS  Google Scholar 

  17. Katase, T., Hiramatsu, H., Kamiya, T. & Hosono, H. Appl. Phys. Express 3, 063101 (2010).

    Article  Google Scholar 

  18. Zhang, Y. et al. Appl. Phys. Lett. 98, 042509 (2011).

    Article  Google Scholar 

  19. Gurevich, A. Phys. Rev. B 82, 184504 (2010).

    Article  Google Scholar 

  20. Blatter, G., Feigelman, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  CAS  Google Scholar 

  21. Hilgenkamp, H. & Mannhart, J. Rev. Mod. Phys. 74, 485–549 (2002).

    Article  CAS  Google Scholar 

  22. Lee, S. et al. Appl. Phys. Lett. 95, 212505 (2009).

    Article  Google Scholar 

  23. Heindl, S. et al. Phys. Rev. Lett. 104, 077001 (2010).

    Article  Google Scholar 

  24. Gao, Z. et al. Supercond. Sci. Technol. 21, 112001 (2008).

    Article  Google Scholar 

  25. Zhang, X. et al. Physica C 470, 104–108 (2010).

    Article  CAS  Google Scholar 

  26. Qi, Y. et al. Supercond. Sci. Technol. 23, 055009 (2010).

    Article  Google Scholar 

  27. Mizuguchi, Y. et al. Appl. Phys. Express 2, 083004 (2009).

    Article  Google Scholar 

  28. Gurevich, A. & Pashitskii, E. A. Phys. Rev. B 57, 13878–13893 (1998).

    Article  CAS  Google Scholar 

  29. Graser, S. et al. Nature Phys. 6, 609–612 (2010).

    Article  CAS  Google Scholar 

  30. Song, X., Daniels, G., Feldmann, D. M., Gurevich, A. & Larbalestier, D. C. Nature Mater. 4, 470–475 (2005).

    Article  CAS  Google Scholar 

  31. Lee, S. et al. Nature Mater. 9, 397–401 (2010).

    Article  CAS  Google Scholar 

  32. Moll, P. J. W. et al. Nature Mater. 9, 628–633 (2010).

    Article  CAS  Google Scholar 

  33. Braithwaite, D. et al. J. Phys. Soc. Jpn 79, 053703 (2010).

    Article  Google Scholar 

  34. Jaroszynski, J. et al. Phys. Rev. B 78, 174523 (2008).

    Article  Google Scholar 

  35. Altarawneh, M. M. et al. Phys. Rev. B 78, 220202(R) (2008).

    Article  Google Scholar 

  36. Braccini, V. et al. Phys. Rev. B 71, 012504 (2005).

    Article  Google Scholar 

  37. Chen, Bo. et al. Nature Phys. 3, 239–242 (2007).

    Article  CAS  Google Scholar 

  38. Ayai, N. et al. Physica C 468, 1747–1752 (2008).

    Article  CAS  Google Scholar 

  39. Baily, S. A. et al. Phys. Rev. Lett. 100, 027004 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Gurevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurevich, A. To use or not to use cool superconductors?. Nature Mater 10, 255–259 (2011). https://doi.org/10.1038/nmat2991

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2991

  • Springer Nature Limited

This article is cited by

Navigation