Skip to main content
Log in

Six-fold-coordinated phosphorus by oxygen in AlPO4 quartz homeotype under high pressure

  • Article
  • Published:

From Nature Materials

View current issue Submit your manuscript

Abstract

AlPO4 belongs to the berlinite quartz homeotype family, which has been the subject of intense high-pressure research triggered by the supposed existence of reversible pressure-induced amorphization. X-ray diffraction experiments, complemented with ab initio calculations, demonstrate the existence of two high-pressure crystalline polymorphs and show that AlPO4 shares the same two-stage densification mechanism as silica. In the first step, a compact hexagonal sublattice of oxygen atoms is formed. In the second step, the cations redistribute in the interstices giving rise to a monoclinic distorted CaCl2 phase. The most outstanding feature of the phase is that phosphorous becomes six-fold coordinated by oxygen, adopting a configuration unknown so far in solid-state science. This finding opens possibilities in the high-pressure chemistry of phosphorus. The close relationship of AlPO4 with silica suggests the existence of completely unexplored families of compounds analogous to those of six-fold-coordinated silicates but based on PO6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: ADXRD diffraction spectra under high pressure.
Figure 2: Rietveld refinements.
Figure 3: AlPO4 high-pressure polymorphs.
Figure 4: AlPO4 lattice parameters.
Figure 5: AlPO4 equation of state.
Figure 6: Relative enthalpy of several AlPO4 polymorphs.

Similar content being viewed by others

References

  1. Haines, J. & Cambon, O. The effects of pressure, temperature and composition on the crystal structures of α-quartz homeotypes. Z. Krystallogr. 219, 314–323 (2004).

    CAS  Google Scholar 

  2. Kruger, M. B. & Jeanloz, R. Memory glass: An amorphous material formed from AlPO4 . Science 249, 647–649 (1990).

    Article  CAS  Google Scholar 

  3. Polian, A., Grimsditch, M. & Philippot, E. Memory effects in pressure induced amorphous AlPO4 . Phys. Rev. Lett. 71, 3143–3145 (1993).

    Article  CAS  Google Scholar 

  4. Tse, J. S. & Klug, D. D. Structural memory in pressure-amorphized AlPO4 . Science 255, 1559–1561 (1992).

    Article  CAS  Google Scholar 

  5. Chaplot, S. L. & Sikka, S. K. Molecular-dynamics simulation of pressure-induced crystalline-to-amorphous transition in some corner-linked polyhedral compounds. Phys. Rev. B 47, 5710–5714 (1993).

    Article  CAS  Google Scholar 

  6. Garg, N. & Sharma, S. M. A molecular dynamical investigation of high pressure phase transformations in berlinite (α-AlPO4). J. Phys. Condens. Matter 12, 375–397 (2000).

    Article  CAS  Google Scholar 

  7. Gillet, P., Badro, J., Varrel, B. & McMillan, P. F. High-pressure behaviour in α-AlPO4: Amorphization and the memory-glass effect. Phys. Rev. B 51, 11262–11269 (1995).

    Article  CAS  Google Scholar 

  8. Sharma, S. M., Garg, N. & Sikka, S. K. High-pressure X-ray-diffraction study of α-AlPO4 . Phys. Rev. B 62, 8824–8827 (2000).

    Article  CAS  Google Scholar 

  9. Sharma, S. M., Garg, N. & Sikka, S. K. High-pressure phase transformations in α-AlPO4: an X-ray diffraction investigation. J. Phys. Condens. Matter 12, 6683–6692 (2000).

    Article  CAS  Google Scholar 

  10. Ramaniah, L. M., Sharma, S. M., Kunc, K., Garg, N. & Laghate, M. First-principles determination of the relative stability of the α and Cmcm structures of AlPO4 . Phys. Rev. B 68, 014119 (2003).

    Article  Google Scholar 

  11. Badro, J., Gillet, Ph., McMillan, P. F., Polian, A. & Itié, J. P. A combined XAS and XRD study of the high-pressure behaviour of GaAsO4 berlinite. Europhys. Lett. 40, 533–538 (1997).

    Article  CAS  Google Scholar 

  12. Polian, A., Itié, J. P., Grimsditch, M., Badro, J. & Philippot, E. Berlinites under pressure. Eur. J. Solid State Inorg. Chem. 34, 669–678 (1997).

    CAS  Google Scholar 

  13. Santamaría-Pérez, D., Haines, J., Amador, U., Morán, E. & Vegas, A. Structural characterization of a new high-pressure phase of GaAsO4 . Acta Cryst. B 62, 1019–1024 (2006).

    Article  Google Scholar 

  14. Matar, S., Lelogeais, M., Michau, D. & Demazeau, G. Investigations of the high pressure varieties of GaAsO4 . Mater. Lett. 10, 45–48 (1990).

    Article  CAS  Google Scholar 

  15. Badro, J., Itié, J. P. & Polian, A. On the high-pressure phase transition in GaPO4 . Eur. Phys. J. B 1, 265–268 (1998).

    Article  CAS  Google Scholar 

  16. Mooney, R. C. L. Crystal structure of anhydrous indium phosphate and thallic phosphate by X-ray diffraction. Acta Cryst. 9, 113–117 (1956).

    Article  CAS  Google Scholar 

  17. Marton^ák, R., Donadio, D., Oganov, A. R. & Parrinello, M. Crystal structure transformations in SiO2 from classical and ab initio metadynamics. Nature Mater. 5, 623–626 (2006).

    Article  Google Scholar 

  18. Tsuneyuki, S., Matsui, Y., Aoki, H. & Tsukada, M. New pressure-induced structural transformations in silica obtained by computer simulation. Nature 339, 209–211 (1989).

    Article  CAS  Google Scholar 

  19. Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high-pressures and 300-degree-K. J. Geophys. Res. 83, 1257–1268 (1978).

    Article  CAS  Google Scholar 

  20. Tsuchida, Y. & Yagi, T. A new, post-stishovite high pressure polymorph of silica. Nature 340, 217–220 (1989).

    Article  CAS  Google Scholar 

  21. Andrault, D., Angel, R. J., Mosenfelder, J. L. & Le Bihan, T. Equation of state of stishovite to lower mantle pressures. Am. Mineral. 88, 301–307 (2003).

    Article  CAS  Google Scholar 

  22. Teter, D. M., Hemley, R. J., Kresse, G. & Hafner, J. High pressure polymorphism in silica. Phys. Rev. Lett. 80, 2145–2148 (1998).

    Article  CAS  Google Scholar 

  23. Kingma, K. J., Cohen, R. E., Hemley, R. J. & Mao, H. K. Transformation of stishovite to a denser phase at lower-mantle pressures. Nature 374, 243–245 (1995).

    Article  CAS  Google Scholar 

  24. Huang, L., Durandurdu, M. & Kieffer, J. Transformations pathways of silica under high pressure. Nature Mater. 5, 977–981 (2006).

    Article  CAS  Google Scholar 

  25. Finger, L. W. & Hazen, R. M. Crystal chemistry of six-coordinated silicon: A key to understanding the earth’s deep interior. Acta Cryst. B 47, 561–580 (1991).

    Article  Google Scholar 

  26. Galy, J. & Miehe, G. Ab initio structures of (M2) and (M3) VO2 high pressure phases. Solid State Sci. 1, 443–448 (1999).

    Article  Google Scholar 

  27. Mao, H., Xu, J. & Bell, P. Calibration of the ruby pressure gauge to 800-kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).

    Article  CAS  Google Scholar 

  28. Chervin, J. C., Canny, B. & Mancinelli, M. Ruby-spheres as pressure gauge for optically transparent high pressure cells. High Press. Res. 21, 305–314 (2002).

    Article  Google Scholar 

  29. Couzinet, B., Dahan, N., Hamel, G. & Chervin, J. C. Optically monitored high-pressure gas loading apparatus for diamond anvil cells. High Press. Res. 23, 409–415 (2003).

    Article  Google Scholar 

  30. Hammersley, A. P. ESRF Internal Report, ESRF97HA02T, “FIT2D: An introduction and Overview” (ESRF, 1995).

  31. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Häusermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Press. Res. 14, 235–248 (1996).

    Article  Google Scholar 

  32. Boultif, A. & Louer, D. Powder pattern indexing with the dichotomy method. J. Appl. Cryst. 37, 724–731 (2004).

    Article  CAS  Google Scholar 

  33. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748 (2004).

  34. Burke, K., Perdew, J. P. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  35. Baroni, S., de Gironcoli, S., Corso, A. D. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  CAS  Google Scholar 

  36. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. A. Alario for a critical reading of the manuscript. We acknowledge the Ministerio de Educación y Ciencia of Spain (project BFM2001-3309-C02-01/02). A.M.S. acknowledges the French National Supercomputing Facility IDRIS, where the calculations have been carried out under the projects CP9-61387 and CP9-71387.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Pellicer-Porres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellicer-Porres, J., Saitta, A., Polian, A. et al. Six-fold-coordinated phosphorus by oxygen in AlPO4 quartz homeotype under high pressure. Nature Mater 6, 698–702 (2007). https://doi.org/10.1038/nmat1966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1966

  • Springer Nature Limited

This article is cited by

Navigation