Skip to main content
Log in

Metal-loaded pollucite-like aluminophosphates: dissymmetrisation of crystal structures and physical properties

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Two aluminophosphate analogues of the mineral pollucite with the general formula Cs2(M,Al)3P3O12 (where M = Cu or Mn) have been synthesized by high-temperature flux and structurally characterized using the single-crystal X-ray diffraction. Both samples crystallize in cubic I4132 space group, Z = 8, with a = 13.5911(5) and a = 13.8544(7) for Cu- and Mn-loaded phases, respectively. Their framework structures are based on the ANA-type topology and exhibit the partial ordering of the metal (M/Al) and phosphorus (P) cations over the tetrahedral sites. The regular changes in cell dimensions and volumes in the row Cs2(Cu,Al)3P3O12→Cs2(Mn,Al)3P3O12 obviously correspond to increasing radii of the transition metal. The crystal chemical analysis of both pollucite-like phases show correlations between the difference in the radii size of tetrahedral cations and the degree of distortion of flexible ANA-type framework due to decreasing of the intertetrahedral angles (T–O–T). Magnetic susceptibility measurements indicate that both compounds are paramagnets in the temperature range of 2–300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. ANA comes from analcime according Atlas of zeolite framework types (Baerlocher et al. 2001).

References

  • Akizuki M (1981) Origin of optical variation in analcime. Am Mineral 66:403–409

    Google Scholar 

  • Akizuki M (1984) Origin of optical variations in grossular-andradite garnet. Am Mineral 69:328–338

    Google Scholar 

  • Akizuki M, Sunagawa I (1978) Study of the sector structure in adularia by means of optical microscopy, infra-red absorption, and electron microscopy. Mineral Mag 42:453–462

    Article  Google Scholar 

  • Artioli G, Pluth JJ, Smith JV (1984) Synthetic phosphorus-substituted analcime, Na13Al24Si13P11O96·16H2O, with ordered Al and Si/P. Acta Cryst C 40:214–217

    Article  Google Scholar 

  • Baerlocher C, Meier WM, Olson DH (2001) Atlas of zeolite framework types. Elsevier, Amsterdam

    Google Scholar 

  • Beger RM (1969) The crystal structure and chemical composition of polluciteZeitschrift. für Kristallographie 129:280–302

    Article  Google Scholar 

  • Bell AMT, Knight KS, Henderson CMB, Fitch AN (2010) Revision of the structure of Cs2CuSi5O12 leucite as orthorhombic Pbca. Acta Cryst B 66:51–59

    Article  Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Cryst B 47:192–197

    Article  Google Scholar 

  • Brown ID, Altermatt D (1985) The automatic searching for chemical bonds in inorganic crystal structures. Acta Cryst B 41:244–247

    Article  Google Scholar 

  • Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Cryst 45:849–854

    Article  Google Scholar 

  • Feng P, Bu X, Stucky GD (1997) Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate. Nature 388:735–741

    Article  Google Scholar 

  • Frank-kamenetskaya OV, Rozhdestvenskaya IV (2004) Cluster structure and dissymmetrization of solid solutions of the pollucite-analcime series. In: Atomic defects and crystal structure of minerals. Yanus Publishing House, Saint Petersburg, pp 95–105  

    Google Scholar 

  • Frank-Kamenetskaya OV, Rozhdestvenskaya IV, Bannova II, Kostitsyna AV, Kaminskaya TN, Gordienko VV (1995) Dissymmetrization of crystal structures of sodium pollucites. Crystallogr Rep 40(4):645–654

    Google Scholar 

  • Frank-Kamenetskaya OV, Rozhdestvenskaya LV, Shtukenberg AG, Bannova II, Skalkina YuA (2007) Dissymmetrization of crystal structures of grossular-andradite garnets Ca3(Al, Fe)2(SiO4)3. Struct Chem 18:493–503

    Article  Google Scholar 

  • Gatta GD, Rinaldi R, Mcintyre GJ, Nénert G, Bellatreccia F, Guastoni A, Della Ventura G (2009) On the crystal structure and crystal chemistry of pollucite, (Cs,Na)16Al16Si32O96·nH2O: a natural microporous material of interest in nuclear technology. Am Mineral 94:1560–1568

    Article  Google Scholar 

  • Hirst JP, Claridge JB, Rosseinsky MJ, Bishop P (2003) High temperature synthesis of a noncentrosymmetric site-ordered cobalt aluminophosphate related to the pollucite structure. Chem Commun 6:684–685  

    Article  Google Scholar 

  • Hughhes JM, Rakovan J, Ertl A, Rossman GR, Baksheev I, Bernhardt HJ (2011) Dissymmetrization in tourmaline: the atomic arrangement of sectorally zoned triclinic Ni-bearing dravite. Can Mineral 49:29–40

    Article  Google Scholar 

  • Kamiya N, Nishi K, Yokomori Y (2008) Crystal structure of pollucite. Z Kristallogr 223:584–590

    Article  Google Scholar 

  • Loginova EE, Orlova AI, Mikhailov DA, Troshin AN, Borovikova EY, Samoilov SG, Kazantsev GN, Kazakova AY, Demarin VT (2011) Phosphorus-containing compounds of pollucite structure and radiochemical problems. Radiochemistry 53:593–603

    Article  Google Scholar 

  • Mazzi F, Galli E (1978) Is each analcime different? Am Mineral 63:448–460

    Google Scholar 

  • Náray-Szabó SV (1938) Die Struktur des Pollucits. Zeitschrift für Kristallographie 99:277–282

    Google Scholar 

  • Nénert G, Bettis J, Kremer R, Yahia HB, Ritter C, Gaudin E, Isnard O, Whangbo MH (2013) Magnetic Properties of the RbMnPO4 Zeolite-ABW-type material: a frustrated zigzag spin chain. Inorg Chem 52(16):9627–9635

    Article  Google Scholar 

  • Newnham RE (1967) Crystal structure and optical properties of pollucite. Am Mineral 52:1515–1518

    Google Scholar 

  • Prince E (ed) (2004) International tables for crystallography volume C: mathematical, physical and chemical tables, 3rd edn. Kluwer, Dordrecht

  • Ratnasamy P, Kumar R (1993) Transition metal-silicate analogs of zeolites. Catal Lett 22:227–237

    Article  Google Scholar 

  • Sheldrick GM (2015a) SHELXT—integrated space-group and crystal-structure determination. Acta Cryst A 71:3–8

    Article  Google Scholar 

  • Sheldrick GM (2015b) Crystal structure refinement with SHELXL. Acta Cryst C 71:3–8

    Article  Google Scholar 

  • Shtukenberg AG, Punin YuO, Frank-Kamenetskaya OV (2006) The kinetic ordering and growth dissymmetrisation in crystalline solid solutions. Russ Chem Rev 75:1083–1106

    Article  Google Scholar 

  • Shtukenberg AG, Euler H, Kirfel A (2007a) Symmetry reduction and cation ordering in alum solid solutions. Zeitschrift für Kristallographie 222(1):73–82

    Google Scholar 

  • Shtukenberg A, Rozhdestvenskaya I, Frank-Kamenetskaya O, Bronzova J, Euler H, Kirfel A, Bannova I, Zolotarev A (2007b) Symmetry and crystal structure of biaxial elbaite-liddicoatite tourmaline from the Transbaikalia Region, Russia. Am Miner 92(4):675–686

    Article  Google Scholar 

  • Strachan DM, Schulz WW (1979) Characterization of pollucite as a material for long-term storage of cesium-137. Am Ceram Soc Bull 58:865–871

    Google Scholar 

  • Yanase I, Kobayashi H, Shibasaki Y, Mitamura T (1997) Tetragonal-to-cubic structural phase transition in pollucite by low-temperature X-ray powder diffraction. J Am Ceram Soc 80:2693–2695

    Article  Google Scholar 

  • Yu H, Wu H, Pan S, Zhang B, Bingbing Z, Wen M, Yang Z, Li H, Jiang X (2013) Noncentrosymmetric cubic CsCdBO3 with Bichromophore. Eur J Inorg Chem 2013:5528–5533  

    Article  Google Scholar 

  • Zamanian S, Kharat AN (2015) Catalytic Olefin Hydroalkoxylation by Nano Particles of Pollucite. Aust J Chem 68:981–986

    Article  Google Scholar 

Download references

Acknowledgements

We thank V. O. Yapaskurt for the microprobe analysis of the crystals and N. V. Zubkova for help in X-ray experiments. L.S. acknowledges financial support by Russian Foundation for Basic Research Grants No.15-05-06742. This work was supported in part from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (K2-2017-084) and by Act 211 of the Russian federation Government, Contracts No. 02.A03.21.0004 and 02.A03.21.0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Shvanskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvanskaya, L.V., Yakubovich, O.V., Koshelev, A.V. et al. Metal-loaded pollucite-like aluminophosphates: dissymmetrisation of crystal structures and physical properties. Phys Chem Minerals 45, 633–640 (2018). https://doi.org/10.1007/s00269-018-0948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0948-z

Keywords

Navigation