Skip to main content
Log in

Nanocrystalline metals

Mapping plasticity

  • News & Views
  • Published:

From Nature Materials

View current issue Submit your manuscript

The strength of polycrystalline materials is well known to increase with decreasing grain size. Below a certain 'strongest size' however, this behaviour is reversed. Mapping the deformation mechanisms in nanoscale materials by molecular dynamics simulation clarifies why.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Map of the operational deformation mechanisms in nanocrystalline f.c.c. metals with grain size d during low-temperature deformation under a stress σ.
Figure 2: Evidence for a 'strongest grain size' in the plastic deformation of nanocrystals obtained by molecular dynamics simulations and experimental work.

a, adapted from ref. 7. Copyright © 2003 Taylor & Francis Ltd. b, adapted from ref. 8. Copyright © 2003 AAAS. c, adapted from ref. 9. Copyright © 2003 American Institute of Physics.

References

  1. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K. & Gleiter, H. Nature Mater. 3, 43–47 (2004).

    Article  CAS  Google Scholar 

  2. Weertman, J.R. in Nanostructured Materials: Processing, Properties and Applications (ed. C.C. Koch) 397 (William Andrews, Norwich, New York, 2002).

    Google Scholar 

  3. Schiotz, J., DiTolla, F.D. & Jacobson, K.W. Nature 391, 561–563 (1998).

    Article  Google Scholar 

  4. Nieh, T.G. & Wadsworth, J. Scripta Met. Mater. 25, 955–958 (1991).

    Article  CAS  Google Scholar 

  5. Yip, S. Nature 391, 532–533 (1998).

    Article  CAS  Google Scholar 

  6. Cheng, S., Spencer, J.A. & Milligan, W.W. Acta Mater. 51, 4505 (2003).

    Article  CAS  Google Scholar 

  7. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, M.K. & Gleiter, H. Phil. Mag. Lett. 83, 385–393 (2003).

    Article  CAS  Google Scholar 

  8. Schiotz, J. & Jacobsen, K.W. Science 301, 1357–1359 (2003).

    Article  CAS  Google Scholar 

  9. Van Vliet, K.J., Tsikata, S. & Suresh, S. Appl. Phys. Lett. 83, 1441–1443 (2003).

    Article  CAS  Google Scholar 

  10. Chen, M. et al. Science 300, 1275–1277 (2003).

    Article  CAS  Google Scholar 

  11. Yamakov, V., Wolf, D., Phillpot, S., Mukherjee, A.K. & Gleiter, H. Nature Mater. 1, 45–48 (2002).

    Article  CAS  Google Scholar 

  12. Ogata, S., Li, J. & Yip, S. Science 298, 807–811 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, S. Mapping plasticity. Nature Mater 3, 11–12 (2004). https://doi.org/10.1038/nmat1053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1053

  • Springer Nature Limited

This article is cited by

Navigation