Skip to main content

Advertisement

Log in

Geological carbon storage

  • Commentary
  • Published:

From Nature Geoscience

View current issue Submit your manuscript

This article has been updated

Storage of the carbon dioxide that is produced by burning fossil fuels is one way to avoid the damaging consequences of climate change. A range of observations suggests that geological carbon storage is much less risky than unabated carbon emissions to the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Leaking natural carbon dioxide at Crystal Geyser, Green River, Utah5.

NIKO KAMPMAN

Figure 2: Diagram of carbon dioxide storage at the Sleipner Field based on seismic images.

Change history

  • 30 November 2009

    In the print version of this Commentary the last two lines of Box 1 are missing. The HTML and PDF versions of the text are correct.

References

  1. IPCC Climate Change 2007: The Physical Science Basis (eds. Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  2. Bachu, S. Prog. Energ. Combust. 34, 254–273 (2008).

    Google Scholar 

  3. Al-Juaied, M. & Whitmore, A. Realistic Costs of Carbon Capture Discussion Paper 2009–08 (Belfer Center for Science and International Affairs, 2009).

    Google Scholar 

  4. Gilfillan, S. M. V. et al. Geochim. Cosmochim. Acta 72, 1174–1198 (2008).

    Google Scholar 

  5. Shipton, Z. K. et al. in Carbon Dioxide Capture for Storage in Deep Geologic Formations — Results from the CO2 Capture Project (eds Benson, S. M., Oldenburg, C., Hoversten, M. & Imbus, S.) 699–712 (Elsevier, 2005).

    Google Scholar 

  6. Dooley, J. J. et al. Carbon Dioxide Capture and Geologic Storage PNWD-3602 (Joint Global Change Research Institute, 2006).

    Google Scholar 

  7. Qi, R., LaForce, T. C. & Blunt, M. J. Int. J. Greenh. Gas Con. 3, 195–205 (2009).

    Google Scholar 

  8. Ennis-King, J. & Paterson, L. Spe J. 10, 349–356 (2005).

    Google Scholar 

  9. Leonenko, Y. & Keith, D. W. Environ. Sci. Technol. 42, 2742–2747 (2008).

    Google Scholar 

  10. Kampman, N., Bickle, M., Becker, J., Assayag, N. & Chapman, H. Earth Planet. Sci. Lett. 284, 473–488 (2009).

    Google Scholar 

  11. Knauss, K. G., Johnson, J. W. & Steefel, C. I. Chem. Geol. 217, 339–350 (2005).

    Google Scholar 

  12. Kharaka, Y. K. et al. Geology 34, 577–580 (2006).

    Google Scholar 

  13. White, A. F. & Brantley, S. L. Chem. Geol. 202, 479–506 (2003).

    Google Scholar 

  14. Gaus, I., Azaroual, M. & Czernichowski-Lauriol, I. Chem. Geol. 217, 319–337 (2005).

    Google Scholar 

  15. Lu, J., Wilkinson, M., Haszeldine, R. S. & Fallick, A. E. Geology 37, 35–38 (2009).

    Google Scholar 

  16. Adams, E. E. & Caldeira, K. Elements 4, 319–324 (2008).

    Google Scholar 

  17. Enstad, L. I., Rygg, K., Haugan, P. M. & Alendal, G. Int. J. Greenh. Gas Con. 2, 511–519 (2008).

    Google Scholar 

  18. Oeklers, E. H., Gislason, S. R. & Matter, J. Elements 4, 333–337 (2008).

    Google Scholar 

  19. Kelemen, P. B. & Matter, J. Proc. Natl Acad. Sci. USA 105, 17295–17300 (2008).

    Google Scholar 

  20. Gale, J. & Freund, P. Environ. Geosci. 8, 210–217, (2001).

    Google Scholar 

  21. Goel, N. J. Petrol. Sci. Eng. 51, 169 (2006).

    Google Scholar 

  22. Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M. & Lyle, S. Earth Planet. Sci. Lett. 255, 164–176 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bickle, M. Geological carbon storage. Nature Geosci 2, 815–818 (2009). https://doi.org/10.1038/ngeo687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo687

  • Springer Nature Limited

This article is cited by

Navigation