Skip to main content
Log in

Following a chemical reaction using high-harmonic interferometry

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The study of chemical reactions on the molecular (femtosecond) timescale typically uses pump laser pulses to excite molecules and subsequent probe pulses to interrogate them. The ultrashort pump pulse can excite only a small fraction of molecules, and the probe wavelength must be carefully chosen to discriminate between excited and unexcited molecules. The past decade has seen the emergence of new methods that are also aimed at imaging chemical reactions as they occur, based on X-ray diffraction1, electron diffraction2 or laser-induced recollision3,4—with spectral selection not available for any of these new methods. Here we show that in the case of high-harmonic spectroscopy based on recollision, this apparent limitation becomes a major advantage owing to the coherent nature of the attosecond high-harmonic pulse generation. The coherence allows the unexcited molecules to act as local oscillators against which the dynamics are observed, so a transient grating technique5,6 can be used to reconstruct the amplitude and phase of emission from the excited molecules. We then extract structural information from the amplitude, which encodes the internuclear separation, by quantum interference at short times and by scattering of the recollision electron at longer times. The phase records the attosecond dynamics of the electrons, giving access to the evolving ionization potentials and the electronic structure of the transient molecule. In our experiment, we are able to document a temporal shift of the high-harmonic field of less than an attosecond (1 as = 10−18 s) between the stretched and compressed geometry of weakly vibrationally excited Br2 in the electronic ground state. The ability to probe structural and electronic features, combined with high time resolution, make high-harmonic spectroscopy ideally suited to measuring coupled electronic and nuclear dynamics occurring in photochemical reactions and to characterizing the electronic structure of transition states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: High-harmonic interferometry of dissociating Br2.
Figure 2: High-harmonic transient grating spectroscopy.
Figure 3: Reconstruction of high-harmonic phases and amplitudes.
Figure 4: Vibration-induced modulation of the high-harmonic phase.

Similar content being viewed by others

References

  1. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Meckel, M. et al. Laser-induced electron tunnelling and diffraction. Science 320, 1478–1482 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Eichler, H. J., Gunter, P. & Pohl, D. W. Laser-Induced Dynamic Gratings Ch. 2–4 (Springer, 1986)

    Book  Google Scholar 

  6. Mairesse, Y. et al. High-order harmonic transient grating spectroscopy in a molecular jet. Phys. Rev. Lett. 100, 143903 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Itatani, J. et al. Controlling high harmonic generation with molecular wave packets. Phys. Rev. Lett. 94, 123902 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Kanai, T., Minemoto, S. & Sakai, H. Quantum interference during high-order harmonic generation from aligned molecules. Nature 435, 470–474 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Wagner, N. L. et al. Monitoring molecular dynamics using coherent electrons from high harmonic generation. Proc. Natl Acad. Sci. USA 103, 13279–13285 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Li, W. et al. Time-resolved dynamics in N2O4 probed using high harmonic generation. Science 322, 1207–1211 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Le, V. H., Le, A. T., Xie, R. H. & Lin, C. D. Theoretical analysis of dynamic chemical imaging using high-order harmonic generation. Phys. Rev. A 76, 013414 (2007)

    Article  ADS  Google Scholar 

  12. Rakitzis, T. P. & Kitsopoulos, T. N. Measurement of Cl and Br photofragment alignment using slice imaging. J. Chem. Phys. 116, 9228–9231 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Kanai, T., Takahashi, E. J., Nabekawa, Y. & Midorikawa, K. Destructive interference during high harmonic generation in mixed gases. Phys. Rev. Lett. 98, 153904 (2007)

    Article  ADS  Google Scholar 

  14. Wörner, H. J., Niikura, H., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009)

    Article  ADS  Google Scholar 

  15. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Lein, M., Hay, N., Velotta, R., Marangos, J. P. & Knight, P. L. Role of the intramolecular phase in high-harmonic generation. Phys. Rev. Lett. 88, 183903 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Nugent-Glandorf, L. et al. Ultrafast time-resolved soft x-ray photoelectron spectroscopy of dissociating Br2 . Phys. Rev. Lett. 87, 193002 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Nugent-Glandorf, L., Scheer, M., Samuels, D. A., Bierbaum, V. M. & Leone, S. R. Ultrafast photodissociation of Br2: laser-generated high-harmonic soft x-ray probing of the transient photoelectron spectra and ionization cross sections. J. Chem. Phys. 117, 6108–6116 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Wernet, P. et al. Real-time evolution of the valence electronic structure in a dissociating molecule. Phys. Rev. Lett. 103, 013001 (2009)

    Article  ADS  Google Scholar 

  21. Zimmermann, B. et al. Localization and loss of coherence in molecular double-slit experiments. Nature Phys. 4, 649–655 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Huber, K. P. & Herzberg, G. Molecular Spectra and Molecular Structure Vol. IV, Constants of Diatomic Molecules 106–108 (Van Nostrand Reinhold, 1979)

    Book  Google Scholar 

  23. Gessner, O. et al. Femtosecond multi-dimensional imaging of a molecular dissociation. Science 311, 219–222 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Bisgaard, C. Z. et al. Time-resolved molecular frame dynamics of fixed-in-space CS2 molecules. Science 323, 1464–1468 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Wang, Z.-M. & Elliott, D. S. Determination of cross sections and continuum phases of rubidium through complete measurements of atomic multiphoton ionization. Phys. Rev. Lett. 84, 3795–3798 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Park, H. & Zare, R. N. Molecular-orbital decomposition of the ionization continuum for a diatomic molecule by angle- and energy-resolved photoelectron spectroscopy. II. Ionization continuum of NO. J. Chem. Phys. 104, 4568–4580 (1996)

    Article  ADS  CAS  Google Scholar 

  27. Lezius, M. et al. Nonadiabatic multielectron dynamics in strong field molecular ionization. Phys. Rev. Lett. 86, 51–54 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Litvinyuk, I. V. et al. Shakeup excitation during optical tunnel ionization. Phys. Rev. Lett. 94, 033003 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Domcke, W., Yarkony, D. R. & Köppel, H. (eds) Conical Intersections: Electronic Structure, Dynamics and Spectroscopy (Adv. Ser. in Phys. Chem., Vol. 15, World Scientific, 2004)

    Book  Google Scholar 

  30. Bucksbaum, P. H. The future of attosecond spectroscopy. Science 317, 766–769 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Funding from Canadian Institute for Photonic Innovation, NSERC and AFOSR is acknowledged. H.J.W. thanks the Swiss National Science Foundation (SNF) for a fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.M.V. proposed the experiment. H.J.W. and J.B.B. performed the experiments. J.B.B. assembled the transient grating set-up. H.J.W. proposed and conducted the data analysis. J.B.B. and D.V.K. performed a preliminary experiment. D.M.V. and H.J.W. did the theoretical calculations. H.J.W., J.B.B, P.B.C. and D.M.V. interpreted the data and wrote the Letter.

Corresponding author

Correspondence to D. M. Villeneuve.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S5 with legends, Supplementary Theoretical Information (1-5), Supplementary Experimental Data (6), Supplementary Results (7) and References. (PDF 984 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wörner, H., Bertrand, J., Kartashov, D. et al. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010). https://doi.org/10.1038/nature09185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09185

  • Springer Nature Limited

This article is cited by

Navigation