Skip to main content
Log in

An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The ‘hot Jupiters’ that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born1,2, or by an alternative mechanism such as planet–planet scattering3. The hot Jupiters closest to their parent stars, at orbital distances of only ∼0.02 astronomical units, have strong tidal interactions4,5, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory6,7. Here we report the discovery of planet WASP-18b with an orbital period of 0.94 days and a mass of ten Jupiter masses (10 MJup), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 106, as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Discovery data for WASP-18b.
Figure 2: Future evolution of WASP-18b.

Similar content being viewed by others

References

  1. Lin, D. N. C., Bodenheimer, P. & Richardson, D. C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Tanaka, H., Takeuchi, T. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002)

    Article  ADS  Google Scholar 

  3. Rasio, F. & Ford, E. B. Dynamical instabilities and the formation of extrasolar planetary systems. Science 274, 954–956 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 99, 126–140 (1981)

    ADS  MATH  Google Scholar 

  5. Eggleton, P. P., Kiseleva, L. G. & Hut, P. The equilibrium tide model for tidal friction. Astrophys. J. 499, 853–870 (1998)

    Article  ADS  Google Scholar 

  6. Sasselov, D. D. The new transiting planet OGLE-TR-56b: orbit and atmosphere. Astrophys. J. 596, 1327–1331 (2003)

    Article  ADS  Google Scholar 

  7. Ogilvie, G. I. & Lin, D. N. C. Tidal dissipation in rotating solar-type stars. Astrophys. J. 661, 1180–1191 (2007)

    Article  ADS  Google Scholar 

  8. Pollacco, D. L. et al. The WASP project and the SuperWASP cameras. Publ. Astron. Soc. Pacif. 118, 1407–1418 (2006)

    Article  ADS  Google Scholar 

  9. Sahu, K. C. et al. Transiting extrasolar planetary candidates in the Galactic bulge. Nature 443, 534–540 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Pont, F. et al. A transiting planet among 23 new near-threshold candidates from the OGLE survey—OGLE-TR-182. Astron. Astrophys. 487, 749–754 (2008)

    Article  ADS  Google Scholar 

  11. Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. H. Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams. Astron. Astrophys. 337, 403–412 (1998)

    ADS  Google Scholar 

  12. Hebb, L. et al. WASP-12b: The hottest transiting planet yet discovered. Astrophys. J. 693, 1920–1928 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Boesgaard, A. M. & Tripicco, M. J. Lithium in the Hyades cluster. Astrophys. J. 302, L49–L53 (1986)

    Article  ADS  CAS  Google Scholar 

  14. Dobbs-Dixon, I., Lin, D. N. C. & Mardling, R. A. Spin–orbit evolution of short-period planets. Astrophys. J. 610, 464–476 (2004)

    Article  ADS  Google Scholar 

  15. Meibom, S. & Mathieu, R. D. A robust measure of tidal circularization in coeval binary populations: the solar-type spectroscopic binary population in the open cluster M35. Astrophys. J. 620, 970–983 (2005)

    Article  ADS  Google Scholar 

  16. Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966)

    Article  ADS  Google Scholar 

  17. Peale, S. J. Origin and evolution of the natural satellites. Annu. Rev. Astron. Astrophys. 37, 533–602 (1999)

    Article  ADS  Google Scholar 

  18. Levrard, B., Winisdoerffer, C. & Chabrier, G. Falling transiting extrasolar giant planets. Astrophys. J. 692, L9–L13 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Jackson, B., Greenberg, R. & Barnes, R. Tidal heating of extrasolar planets. Astrophys. J. 681, 1631–1638 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Laughlin, G. et al. Rapid heating of the atmosphere of an extrasolar planet. Nature 457, 562–564 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Pätzold, M. & Rauer, H. Where are the massive close-in extrasolar planets? Astrophys. J. 568, L117–L120 (2002)

    Article  ADS  Google Scholar 

  22. Pätzold, M., Carone, L. & Rauer, H. Tidal interactions of close-in extrasolar planets: The OGLE cases. Astron. Astrophys. 427, 1075–1080 (2004)

    Article  ADS  Google Scholar 

  23. Gillon, M. et al. Improved parameters for the transiting hot Jupiters WASP-4b and WASP-5b. Astron. Astrophys. 496, 259–267 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Israelian, G., Santos, N. C., Mayor, M. & Rebolo, R. Evidence for planet engulfment by the star HD 82943. Nature 411, 163–166 (2001)

    Article  ADS  CAS  Google Scholar 

  25. van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007)

    Article  ADS  Google Scholar 

  26. Collier-Cameron, A. et al. WASP-1b and WASP-2b: two new transiting exoplanets detected with SuperWASP and SOPHIE. Mon. Not. R. Astron. Soc. 375, 951–957 (2007)

    Article  ADS  Google Scholar 

  27. West, R. et al. The low density transiting exoplanet WASP-15b. Astron. J. 137, 4834–4836 (2009)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the South African Astronomical Observatory for hosting WASP-South and the UK’s Science and Technology Facilities Council for funding.

Author Contributions WASP-S construction, operation and candidate selection (C.H., D.R.A., D.M.W., P.F.L.M., B.S., S.J.B.); WASP-S design (D.L.P); WASP observatory software (J.I., D.R.A., P.F.L.M.); WASP-S data processing (D.R.A., D.M.W., B.S.); WASP data pipeline (A.C.C., T.A.L., N.P., K.H.); transit-search code (A.C.C., L.H., B.E.); WASP data archive (R.G.W., P.J.W.); Coralie/EulerCAM data (M.G., A.H.M.J.T., D.S., D.Q.); Euler/Coralie construction and upgrade (D.Q., M.M., S.U., F.P.); planet characterization (A.C.C., D.R.A., M.G.); host star characterization (B.S., L.H.); paper writing (C.H., A.C.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coel Hellier.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and Supplementary Figures 1-4 with Legends. (PDF 259 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellier, C., Anderson, D., Cameron, A. et al. An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b. Nature 460, 1098–1100 (2009). https://doi.org/10.1038/nature08245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08245

  • Springer Nature Limited

This article is cited by

Navigation