Skip to main content
Log in

Palaeoclimatology

Archaean palaeosols and Archaean air (reply)

  • Brief Communications Arising
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Ohmoto et al. reply - The idea of a methane-rich Archaean atmosphere has become popular since Rye et al. assumed in their calculation1 that siderite was absent in pre-2.2-Gyr palaeosols. We have concluded that the absence of siderite in some Archaean palaeosols does not constrain the atmospheric pCO2, but the presence of much siderite in sedimentary rocks does2. Sleep's recognition3 that siderite occurs in Archaean palaeosols substantiates our arguments2: although siderite should be absent in well aerated soils of all geological ages, it may form in waterlogged soils where pO2 became less than about 10−60 atm owing to the abundant anaerobic production of H2. In fact, we have reported this in a 2.6-Gyr soil profile at Schagen, South Africa4: abundant ferric-rich minerals formed while the soil was exposed to air, but ferrous-rich carbonate formed while it was apparently submerged under an anoxic pond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rye, R., Kuo, P. H. & Holland, H. D. Nature 378, 603–605 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Ohmoto, H., Watanabe, Y. & Kumazawa, K. Nature 429, 395–399 (2004).

    Article  ADS  CAS  Google Scholar 

  3. Sleep, N. Nature doi:10.1038/nature03167 (2004).

  4. Watanabe, Y., Stewart, B. W. & Ohmoto, H. Geochim. Cosmochim. Acta 68, 2129–2151 (2004).

    Article  ADS  CAS  Google Scholar 

  5. Brocks, J. J., Buick, R., Logan, G. A. & Summons, R. E. Geochim. Cosmochim. Acta 22, 4321–4335 (2003).

    Article  ADS  Google Scholar 

  6. Rosing, M. T. & Frei, R. Earth Planet. Sci. Lett. 217, 237–244 (2004).

    Article  ADS  CAS  Google Scholar 

  7. Jahnke, L. & Klein, H. P. J. Bacteriol. 155, 488–492 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nisbet, E. G. in Early Precambrian Processes (eds Coward, M. P. & Ries, A. C.) 27–51 (The Geological Society, London, 1995).

    Google Scholar 

  9. Gottschalk, G. in Bacterial Metabolism 2nd edn 359 (Springer, New York, 1986).

    Book  Google Scholar 

  10. Condie, K. C., Des Marais, D. J. & Abbott, D. Precambrian Res. 106, 239–260 (2001).

    Article  ADS  CAS  Google Scholar 

  11. Kasting, J. F. Nature doi:10.1038/nature03166 (2004).

  12. Kasting, J. F. Precambrian Res. 34, 205–229 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Kasting, J. F. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 1185–1187 (Cambridge Univ. Press, 1992).

    Google Scholar 

  14. Pavlov, A. A., Kasting, J. F., Eigenbrode, J. L. & Freeman, K. H. Geology 29, 1003–1006 (2001).

    Article  ADS  CAS  Google Scholar 

  15. Pavlov, A. A. & Kasting, J. F. Astrobiology 2, 27–41 (2002).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ohmoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmoto, H., Watanabe, Y. Archaean palaeosols and Archaean air (reply). Nature 432, 1–2 (2004). https://doi.org/10.1038/nature03168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03168

  • Springer Nature Limited

Navigation