Skip to main content
Log in

Room-temperature ferromagnetic nanotubes controlled by electron or hole doping

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Nanotubes and nanowires with both elemental1,2 (carbon or silicon) and multi-element3,4,5 compositions (such as compound semiconductors or oxides), and exhibiting electronic properties ranging from metallic to semiconducting, are being extensively investigated for use in device structures designed to control electron charge6,7,8. However, another important degree of freedom—electron spin, the control of which underlies the operation of ‘spintronic’ devices9—has been much less explored. This is probably due to the relative paucity of nanometre-scale ferromagnetic building blocks10 (in which electron spins are naturally aligned) from which spin-polarized electrons can be injected. Here we describe nanotubes of vanadium oxide (VOx), formed by controllable self-assembly11, that are ferromagnetic at room temperature. The as-formed nanotubes are transformed from spin-frustrated semiconductors to ferromagnets by doping with either electrons or holes, potentially offering a route to spin control12 in nanotube-based heterostructures13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Vanadium oxide nanotubes ‘self-assembled’ using dodecylamine as a structure-directing templating agent.
Figure 2: Magnetization of VOx nanotubes after hole and electron doping.
Figure 3: A schematic representation of Mott–Hubbard band splitting in VOx nanotubes and a simple unit-cell model of spin textures with and without charge doping.
Figure 4: Spin-gapped magnetic susceptibility of as-assembled VOx nanotubes, containing approximately one spin in each V(1), V(2), and V(3) site.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  CAS  Google Scholar 

  2. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire bulding blocks. Science 291, 851–853 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Tenne, R., Margulis, L., Genut, M. & Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Rosenfeld-Hacohen, Y., Grunbaum, E., Tenne, R., Sloan, J. & Hutchison, J. L. Cage structures and nanotubes of NiCl2 . Nature 395, 336–337 (1998)

    Article  ADS  Google Scholar 

  5. Remskar, M. et al. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292, 479–481 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52(5), 22–28 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Fuhrer, M. S. et al. Crossed nanotube junctions. Science 288, 494–497 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Derycke, V., Martel, R., Appenzeller, J. & Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 1, 453–456 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Hueso, L. & Mathur, N. Dreams of a hollow future. Nature 427, 301–303 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Krumeich, F. et al. Morphology and topochemical reactions of novel vanadium oxide nanotubes. J. Am Chem. Soc. 121, 8324–8331 (1999)

    Article  CAS  Google Scholar 

  12. Tsukagoshi, K., Alphenaar, B. W. & Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Yao, Z., Postma, H. W. Ch., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Levy, P., Leyva, A. G., Troiani, H. E. & Sánchez, R. D. Nanotubes of rare-earth manganese oxides. Appl. Phys. Lett. 83, 5247–5249 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Zavalij, P. Y. & Whittingham, M. S. Structural chemistry of vanadium oxides with open frameworks. Acta Cryst. B 55, 627–663 (1999)

    Article  CAS  Google Scholar 

  18. Mott, N. F. Metal–Insulator Transitions (Taylor & Francis, London, 1974)

    Google Scholar 

  19. Kanada, M. et al. On the magnetic properties of systems with low dimensional linkage of VO5 pyramids. J. Phys. Soc. Jpn 67, 2904–2909 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Limelette, P. et al. Universality and critical behavior at the Mott transition. Science 302, 89–92 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Yamauchi, T., Ueda, Y. & Mori, N. Pressure-induced superconductivity in β–Na0.33V2O5 beyond charge ordering. Phys. Rev. Lett. 89, 057002 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Pickett, W. E. Impact of structure on magnetic coupling in CaV4O9 . Phys. Rev. Lett. 92, 056402 (2004)

    Article  Google Scholar 

  23. Korotin, M. A. et al. Exchange interactions and magnetic properties of the layered vanadates CaV2O5, MgV2O5, CaV3O7, and CaV4O9 . Phys. Rev. Lett. 83, 1387–1390 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Lumsden, M. D., Sales, B. C., Mandrus, D., Nagler, S. E. & Thompson, J. R. Weak ferromagnetism and field-induced spin reorientation in K2V3O8 . Phys. Rev. Lett. 86, 159–162 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Onoda, M. & Nishiguchi, N. Crystal structure and spin gap state of CaV2O5 . J. Solid-State Chem. 127, 359–362 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Dobley, A. et al. Manganese vanadium oxide nanotubes: synthesis, characterization, and electrochemistry. Chem. Mater. 13, 4382–4386 (2001)

    Article  CAS  Google Scholar 

  27. Wang, X., Liu, L., Bontchev, R. & Jacobson, A. J. Electrochemical-hydrothermal synthesis and structure determination of a novel layered mixed-valence oxide: BaV7O16·nH2O. J. Chem. Soc. Chem. Commun. 1009–1010 (1998)

  28. Bergström, Ö., Gustasson, T. & Thomas, J. O. Electrochemically lithiated vanadium oxide, Li2V6O13 . Acta Cryst. C 53, 528–530 (1997)

    Article  Google Scholar 

  29. Bertotti, G. Hysteresis in Magnetism (Academic, London, 1998)

    Google Scholar 

  30. Cao, J. et al. Effect of sheet distance on the optical properties of vanadate nanotubes. Chem. Mater. 16, 731–736 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Afzali, K.-S. Cho, C. R. Kagan, F. X. Redl and S. Sun for technical advice, C. A. Feild for chemistry insights, P. Y. Zavalij for his expertise in crystal structures, B. Spivak and A. M. Tsvelik for discussions, and R. Ludeke for his contributions. This work is supported in part by the Defense Advanced Research Project Agency (DARPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Krusin-Elbaum.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Optical absorption spectrum of as-assembled VOx nanotubes: figure, figure caption and references (PDF 222 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krusin-Elbaum, L., Newns, D., Zeng, H. et al. Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431, 672–676 (2004). https://doi.org/10.1038/nature02970

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02970

  • Springer Nature Limited

This article is cited by

Navigation