Skip to main content

Advertisement

Log in

Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Although often regarded as a network-former in conventional silicate glasses, Al2O3 alone cannot be obtained as a bulk glass. Until now, glasses comprising continuously linked [AlOx] polyhedra have been prepared in only a few systems under very fast cooling conditions, which limits their dimensions to a few millimetres1,2,3. Yet it is desirable to prepare bulk, or monolithic, alumina-rich glasses, with the prospect of superior mechanical, chemical and optical properties4. Here we report a novel process for preparing very-high-alumina glasses and nanoscale glass-ceramics. Fully dense bulk articles in net shape are obtained through viscous sintering of glass microbeads. Additional heat treatment of the consolidated glasses leads to fully crystallized transparent glass-converted nanoceramics with a hardness similar to that of alumina. This method avoids the impracticably high applied pressures (more than 1 GPa) that have been required in most cases to prepare nanocrystalline ceramics by sintering, owing to the concurrent nature of densification and grain growth under pressureless conditions5,6. The reported techniques can be extended to form glasses and nanoceramics in other oxide systems that do not include a conventional glass-forming component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Effect of rare-earth ion size on ΔTx.
Figure 2: Bulk rare-earth aluminate glasses.
Figure 3: Consolidation of glass microbeads by hot-pressing.
Figure 4: Scanning electron micrographs of fracture surfaces.
Figure 5: Map of hardness against Al2O3 content in different material classes.

Similar content being viewed by others

References

  1. Sun, K.-H. Aluminate glasses. Glass Ind. 30, 199–200, 232 (1949)

    CAS  Google Scholar 

  2. Sarjeant, P. T. & Roy, R. in Reactivity of Solids (eds Mitchell, J. W., DeVries, R. C., Roberts, R. W. & Cannon, P.) 725–733 (Wiley, New York, 1969)

    Google Scholar 

  3. Weber, J. K. R., Abadie, J. G., Hixson, A. D., Nordine, P. & Jerman, G. A. Glass formation and polyamorphism in rare-earth oxide-aluminum oxide compositions. J. Am. Ceram. Soc 83, 868–872 (2000)

    Google Scholar 

  4. Weber, R., Nordine, P. C., Key, T. & Tangeman, J. in Proceedings of the SPIE – The International Society for Optical Engineering Vol. 4990 (eds Shibin, J. & Jacques, L.) 70–76 (SPIE – Int. Soc. Opt. Eng., Bellingham, WA, 2003)

    Google Scholar 

  5. Liao, S.-C., Chen, Y.-J., Kear, B. H. & Mayo, W. E. High pressure/low temperature sintering of nanocrystalline alumina. Nanostruct. Mater. 10, 1063–1079 (1998)

    Article  CAS  Google Scholar 

  6. Chen, I.-W. & Wang, X.-H. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404, 168–171 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Klement, W., Willens, R. & Duwez, P. Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869–870 (1960)

    Article  ADS  CAS  Google Scholar 

  8. Turnbull, D. & Cohen, M. H. Composition requirements for glass formation in metallic and ionic systems. Nature 189, 131–132 (1961)

    Google Scholar 

  9. Rawson, H. Inorganic Glass-forming Systems 23–29 (Academic, New York, 1967)

    Google Scholar 

  10. Jantzen, C. M., Krepski, R. P. & Herman, H. Ultra-rapid quenching of laser-melted binary and unary oxides. Mat. Res. Bull. 15, 1313–1326 (1980)

    Article  CAS  Google Scholar 

  11. McMillan, P. & Piriou, B. Raman spectroscopy of calcium aluminate glasses and crystals. J. Non-Cryst. Solids 55, 221–242 (1983)

    Article  ADS  CAS  Google Scholar 

  12. Shelby, J. E. Formation and properties of calcium aluminosilicate glasses. J. Am. Ceram. Soc 68, 155–158 (1985)

    Article  CAS  Google Scholar 

  13. Yajima, S., Okamura, K. & Shishido, T. Glass formation in the Ln-Al-O system (Ln: Lanthanoid and ytrrium elements). Chem. Lett. (Jpn.) 8, 1313–1326 (1980)

    Google Scholar 

  14. Kawamura, Y., Kato, H. & Inoue, A. Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state. Appl. Phys. Lett. 67, 2008–2013 (1995)

    Article  ADS  CAS  Google Scholar 

  15. Waku, Y., Ohtsubo, H. & Inoue, A. A jelly-like ceramic fiber at 1193 K. Mat. Res. Innovat. 3, 185–189 (2000)

    Article  CAS  Google Scholar 

  16. Sarjeant, P. T. & Roy, R. Ti4+ coordination in glasses in RO-TiO2 systems. J. Am. Ceram. Soc. 52, 57–58 (1969)

    Article  CAS  Google Scholar 

  17. Inoue, A., Zhang, T. & Masumoto, T. Glass-forming ability of alloys. J. Non-Cryst. Solids 156–158, 473–480 (1993)

    Article  ADS  Google Scholar 

  18. Shelby, J. E. & Kohli, J. T. Rare-earth aluminosilicate glasses. J. Am. Ceram. Soc 73, 39–42 (1990)

    Article  CAS  Google Scholar 

  19. Angell, C. A. Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J. Non-Cryst. Solids 102, 205–221 (1988)

    Article  ADS  CAS  Google Scholar 

  20. Beall, G. H. in Advances in Nucleation and Crystallization in Glasses (eds Hench, L. L. & Freiman, S. W.) 251–261 (American Ceramic Society, Columbus, Ohio, 1971)

    Google Scholar 

  21. Rosenflanz, A. Fused Al2O3-Rare-Earth oxide-ZrO2 Eutectic Materials. US Patent 6,582,488 (2003)

  22. Beall, G. H. & Pinckney, L. R. Nanophase glass-ceramics. J. Am. Ceram. Soc 82, 5–16 (1999)

    Article  CAS  Google Scholar 

  23. Mizuta, H. et al. Preparation of high-strength and translucent alumina by hot isostatic pressing. J. Am. Ceram. Soc. 75, 469–473 (1992)

    Article  CAS  Google Scholar 

  24. Yip, S. Nanocrystals: the strongest size. Nature 391, 532–533 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Kear, B. H., Liao, S.-C. & Mayo, W. E. High Pressure and Low Temperature Sintering of Nanophase Ceramic Powders. US Patent 6,395,214 (2002).

  26. Freim, J., McKittrick, J., Nellis, W. J. & Katz, J. D. Development of novel microstructures in zirconia-toughened alumina using rapid solidification and shock compaction. J. Mater. Res. 11, 110–119 (1996)

    Article  ADS  CAS  Google Scholar 

  27. Wilding, M. C. & McMillan, P. F. Polyamorphic transitions in yttria-alumina liquids. J. Non-Cryst. Solids 293–295, 357–365 (2001)

    Article  ADS  Google Scholar 

  28. Bansal, N. P. Handbook of Glass Properties Ch. 11 (Academic, New York, 1986)

    Google Scholar 

  29. McMillan, P. W. in Glass-ceramics (eds Roberts, J. P. & Popper, P.) 196–200 (Academic, New York, 1979)

    Google Scholar 

Download references

Acknowledgements

We thank C. Goodbrake (3M Company) for help with microscopy, and I.-W. Chen (University of Pennsylvania) for helpful comments during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rosenflanz.

Ethics declarations

Competing interests

The authors are all employees of 3M Corporation.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenflanz, A., Frey, M., Endres, B. et al. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature 430, 761–764 (2004). https://doi.org/10.1038/nature02729

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02729

  • Springer Nature Limited

This article is cited by

Navigation