Skip to main content
Log in

Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

If the rich functionality of organic molecules is to be exploited in devices such as light-emitting diodes or field-effect transistors1,2,3,4,5,6,7, interface properties of organic materials with various (metallic and insulating) substrates must be tailored carefully7,8,9,10. In many cases, this calls for well-ordered interfaces. Organic epitaxy11,12,13—that is, the growth of molecular films with a commensurate structural relationship to their crystalline substrates—relies on successful recognition of preferred epitaxial sites. For some large π-conjugated molecules (‘molecular platelets’) this works surprisingly well14,15, even if the substrate exhibits no template structure into which the molecules can lock13,15,16. Here we present an explanation for site recognition in non-templated organic epitaxy, and thus resolve a long-standing puzzle11. We propose that this form of site recognition relies on the existence of a local molecular reaction centre in the extended π-electron system of the molecule. Its activity can be controlled by appropriate side groups and—in a certain regime—may also be probed by molecularly sensitized scanning tunnelling microscopy. Our results open the possibility of engineering epitaxial interfaces, as well as other interfacial nanostructures for which specific site recognition is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Organic epitaxy of PTCDA on the Ag(111) surface.
Figure 2: Spectroscopic signature of epitaxial site recognition.
Figure 3: Probing site recognition with the STM.

Similar content being viewed by others

References

  1. Dodabalapur, A. Organic light emitting diodes. Solid State Commun. 102, 259–267 (1997)

    Article  ADS  CAS  Google Scholar 

  2. Horowitz, G. Organic field-effect transistors. Adv. Mater. 10, 365–377 (1998)

    Article  CAS  Google Scholar 

  3. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002)

    Article  CAS  Google Scholar 

  4. Katz, H. E. et al. A soluble and air-stable organic semiconductor with high electron mobility. Nature 404, 478–481 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Schoonfeld, W. A. et al. Coloumb-blockade transport in single-crystal organic thin-film transistors. Nature 404, 977–980 (2000)

    Article  ADS  Google Scholar 

  6. Crone, B. et al. Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521–523 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Dimitrakopoulos, C. D. et al. Low voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822–824 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Horowitz, G. et al. Role of semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin film transistors. Synth. Metals 51, 419–424 (1992)

    Article  CAS  Google Scholar 

  9. Hill, I. G. et al. Organic semiconductor interfaces: electronic structure and transport properties. Appl. Surf. Sci. 166, 354–362 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Meyer zu Heringdorf, F. J. et al. Growth dynamics of pentacene films. Nature 412 (2001), 517–520

    Article  ADS  Google Scholar 

  11. Forrest, S. R. Ultrathin organic films grown by molecular beam deposition and related techniques. Chem. Rev. 97, 1793–1896 (1997)

    Article  CAS  Google Scholar 

  12. Hillier, A. C. & Ward, M. D. Epitaxial interactions between molecular overlayers and ordered substrates. Phys. Rev. B 54, 14037–14051 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Umbach, E. et al. Surface architecture with large organic molecules: Interface order and epitaxy. Surf. Sci. 402–404, 20–31 (1998)

    Article  ADS  Google Scholar 

  14. Chen, Q. et al. Epitaxy of a crystalline organic semiconductor: Perylene/Cu(110). Chem. Mater. 14, 743–749 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Fink, R. et al. Substrate-dependent lateral order in naphthalene-tetracarboxylic-dianhydride monolayers. Phys. Rev. B 60, 2818–2826 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Soukopp, A. et al. Superstructure formation of large organic adsorbates on a metal surface: A systematic approach using oligothiophenes on Ag(111). Phys. Rev. B 58, 13882–13894 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Tada, H. et al. Structural analysis of lead phthalocyanine ultrathin films grown on cleaved faces of alkali halides by reflection high energy electron diffraction. Surf. Sci. 268, 387–396 (1992)

    Article  ADS  CAS  Google Scholar 

  18. Zhang, Y. & Forrest, S. R. Mechanisms of quasiepitaxial ordering at organic molecular thin film interfaces. Phys. Rev. Lett. 71, 2765–2768 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Forrest, S. R. et al. Ultrahigh-vacuum quasiepitaxial growth of model van der Waals thin films II. Experiment. Phys. Rev. B 49, 11309–11321 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Hirose, Y. et al. Ordered, quasi-epitaxial growth of organic thin film on Se-passivated GaAs(100). Appl. Phys. Lett. 66, 944–946 (1995)

    Article  ADS  CAS  Google Scholar 

  21. Schmitz-Huebsch, T. et al. Epitaxial growth of 3,4,9,10-perylenetetracarboxylic dianhydride on Au(111): A STM and RHEED study. Phys. Rev. B 55, 7972–7976 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Hirose, Y. et al. Quasiepitaxial growth of the organic molecular semiconductor 3,4,9,10-perylenetetracarboxylic dianhydride. Phys. Rev. B 52, 14040–14047 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Forrest, S. R. et al. Organic-on-organic semiconductor contact barrier diodes. II. Dependence on organic film and metal contact properties. J. Appl. Phys. 56 543–551 (1984),

    Article  ADS  CAS  Google Scholar 

  24. Möbus, M. et al. Structure of perylene-tetracarboxylic-dianhydride thin films on alkali halide crystal substrates. J. Cryst. Growth 116, 495–504 (1992)

    Article  ADS  Google Scholar 

  25. Taborski, J. et al. NEXAFS investigations on ordered adsorbate layers of large aromatic molecules. J. Electr. Spec. Rel. Phenom. 75, 129–147 (1995)

    Article  CAS  Google Scholar 

  26. Tautz, F. S. et al. Strong electron-phonon-coupling at a metal/organic interface: PTCDA/Ag(111). Phys. Rev. B 65, 125405 (2002)

    Article  ADS  Google Scholar 

  27. Tautz, F. S. et al. A comparison of the chemisorption behaviour of PTCDA on different Ag surfaces. Surf. Sci. 502–503, 176–184 (2002)

    Article  ADS  Google Scholar 

  28. Frisch, M. et al. Gaussian 98, Rev. A6, (1998) (Gaussian, Inc., Pittsburgh)

    Google Scholar 

  29. Böhringer, M. et al. Scanning tunneling microscope-induced molecular motion and its effect on the image formation. Surf. Sci. 408, 72–85 (1998)

    Article  ADS  Google Scholar 

  30. Wagner, V. Raman analysis of ordered organic monolayers on metal surfaces. Phys. Status Solidi A 188, 1297–1305 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Shklover and E. Umbach of the University of Würzburg for making output data of the quantum chemical calculations available to us, and for discussions. The work was financially supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Tautz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremtchenko, M., Schaefer, J. & Tautz, F. Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design. Nature 425, 602–605 (2003). https://doi.org/10.1038/nature01901

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01901

  • Springer Nature Limited

This article is cited by

Navigation