Skip to main content

Advertisement

Log in

Immunology

SDF-1 and PDGF enhance αvβ5-mediated ERK activation and adhesion-independent growth of human pre-B cell lines

  • Original Article
  • Published:
Leukemia Submit manuscript

Abstract

CD23 acts through the αvβ5 integrin to promote growth of human pre-B cell lines in an adhesion-independent manner. αvβ5 is expressed on normal B-cell precursors in the bone marrow. Soluble CD23 (sCD23), short CD23-derived peptides containing the arg-lys-cys (RKC) motif recognized by αvβ5 and anti-αvβ5 monoclonal antibodies (MAbs) all sustain growth of pre-B cell lines. The chemokine stromal cell-derived factor-1 (SDF-1) regulates key processes during B-cell development. SDF-1 enhanced the growth-sustaining effect driven by ligation of αvβ5 with anti-αvβ5 MAb 15F-11, sCD23 or CD23-derived RKC-containing peptides. This effect was restricted to B-cell precursors and was specific to SDF-1. The enhancement in growth was associated with the activation of extracellular signal-regulated kinase (ERK) and both these responses were attenuated by the MEK inhibitor U0126. Finally, platelet-derived growth factor also enhanced both αvβ5-mediated cell growth and ERK activation. The data suggest that adhesion-independent growth-promoting signals delivered to B-cell precursors through the αvβ5 integrin can be modulated by cross-talk with receptors linked to both G-protein and tyrosine kinase-coupled signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. LeBien TW . Fates of human B-cell precursors. Blood 2000; 96: 9–23.

    CAS  PubMed  Google Scholar 

  2. Borland G, Edkins AL, Acharya M, Matheson J, White LJ, Allen JM et al. alphavbeta5 integrin sustains growth of human pre-B cells through an RGD-independent interaction with a basic domain of the CD23 protein. J Biol Chem 2007; 282: 27315–27326.

    Article  CAS  PubMed  Google Scholar 

  3. White LJ, Ozanne BW, Graber P, Aubry JP, Bonnefoy JY, Cushley W . Inhibition of apoptosis in a human pre-B-cell line by CD23 is mediated via a novel receptor. Blood 1997; 90: 234–243.

    CAS  PubMed  Google Scholar 

  4. Lecoanet-Henchoz S, Gauchat JF, Aubry JP, Graber P, Life P, Paul-Eugene N et al. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity 1995; 3: 119–125.

    Article  CAS  PubMed  Google Scholar 

  5. Lecoanet-Henchoz S, Plater-Zyberk C, Graber P, Gretener D, Aubry JP, Conrad DH et al. Mouse CD23 regulates monocyte activation through an interaction with the adhesion molecule CD11b/CD18. Eur J Immunol 1997; 27: 2290–2294.

    Article  CAS  PubMed  Google Scholar 

  6. Hermann P, Armant M, Brown E, Rubio M, Ishihara H, Ulrich D et al. The vitronectin receptor and its associated CD47 molecule mediates proinflammatory cytokine synthesis in human monocytes by interaction with soluble CD23. J Cell Biol 1999; 144: 767–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu YJ, Cairns JA, Holder MJ, Abbot SD, Jansen KU, Bonnefoy JY et al. Recombinant 25-kDa CD23 and interleukin 1 alpha promote the survival of germinal center B cells: evidence for bifurcation in the development of centrocytes rescued from apoptosis. Eur J Immunol 1991; 21: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  8. Bonnefoy JY, Lecoanet-Henchoz S, Aubry JP, Gauchat JF, Graber P . CD23 and B-cell activation. Curr Opin Immunol 1995; 7: 355–359.

    Article  CAS  PubMed  Google Scholar 

  9. Aubry JP, Pochon S, Graber P, Jansen KU, Bonnefoy JY . CD21 is a ligand for CD23 and regulates IgE production. Nature 1992; 358: 505–507.

    Article  CAS  PubMed  Google Scholar 

  10. Bansal A, Roberts T, Hay EM, Kay R, Pumphrey RS, Wilson PB . Soluble CD23 levels are elevated in the serum of patients with primary Sjogren's syndrome and systemic lupus erythematosus. Clin Exp Immunol 1992; 89: 452–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarfati M . CD23 and chronic lymphocytic leukemia. Blood Cells 1993; 19: 591–596; discussion 597–9.

    CAS  PubMed  Google Scholar 

  12. Hynes RO . Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673–687.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar CC . Signaling by integrin receptors. Oncogene 1998; 17 (11 Reviews): 1365–1373.

    Article  CAS  PubMed  Google Scholar 

  14. Ruoslahti E . RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996; 12: 697–715.

    Article  CAS  PubMed  Google Scholar 

  15. Ashley DM, Bol SJ, Kannourakis G . Human bone marrow stromal cell contact and soluble factors have different effects on the survival and proliferation of paediatric B-lineage acute lymphoblastic leukaemic blasts. Leuk Res 1994; 18: 337–346.

    Article  CAS  PubMed  Google Scholar 

  16. Bradstock K, Makrynikola V, Bianchi A, Byth K . Analysis of the mechanism of adhesion of precursor-B acute lymphoblastic leukemia cells to bone marrow fibroblasts. Blood 1993; 82: 3437–3444.

    CAS  PubMed  Google Scholar 

  17. Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D . Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood 1992; 79: 2370–2377.

    CAS  PubMed  Google Scholar 

  18. Nagasawa T, Nakajima T, Tachibana K, Iizasa H, Bleul CC, Yoshie O et al. Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci USA 1996; 93: 14726–14729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005; 280: 35760–35766.

    Article  CAS  PubMed  Google Scholar 

  20. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203: 2201–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448–9453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635–638.

    Article  CAS  PubMed  Google Scholar 

  23. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998; 393: 591–594.

    Article  CAS  PubMed  Google Scholar 

  24. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR . Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595–599.

    Article  CAS  PubMed  Google Scholar 

  25. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC . The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 1997; 185: 111–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA . A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996; 184: 1101–1109.

    Article  CAS  PubMed  Google Scholar 

  27. Bradstock KF, Gottlieb DJ . Interaction of acute leukemia cells with the bone marrow microenvironment: implications for control of minimal residual disease. Leuk Lymphoma 1995; 18: 1–16.

    Article  CAS  PubMed  Google Scholar 

  28. Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M . CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 2005; 24: 4462–4471.

    Article  CAS  PubMed  Google Scholar 

  29. Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL, Albella B, Blaya C, Wright N et al. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 2001; 29: 345–355.

    Article  CAS  PubMed  Google Scholar 

  30. Liesveld JL, Dipersio JF, Abboud CN . Integrins and adhesive receptors in normal and leukemic CD34+ progenitor cells: potential regulatory checkpoints for cellular traffic. Leuk Lymphoma 1994; 14: 19–28.

    Article  CAS  PubMed  Google Scholar 

  31. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000; 95: 3289–3296.

    CAS  PubMed  Google Scholar 

  32. Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF . The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 2001; 29: 1439–1447.

    Article  CAS  PubMed  Google Scholar 

  33. Broxmeyer HE, Kim CH . Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Exp Hematol 1999; 27: 1113–1123.

    Article  CAS  PubMed  Google Scholar 

  34. Nishii K, Katayama N, Miwa H, Shikami M, Masuya M, Shiku H et al. Survival of human leukaemic B-cell precursors is supported by stromal cells and cytokines: association with the expression of bcl-2 protein. Br J Haematol 1999; 105: 701–710.

    Article  CAS  PubMed  Google Scholar 

  35. Juarez J, Bendall L . SDF-1 and CXCR4 in normal and malignant hematopoiesis. Histol Histopathol 2004; 19: 299–309.

    CAS  PubMed  Google Scholar 

  36. Lataillade JJ, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P et al. Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood 2000; 95: 756–768.

    CAS  PubMed  Google Scholar 

  37. Arai A, Jin A, Yan W, Mizuchi D, Yamamoto K, Nanki T et al. SDF-1 synergistically enhances IL-3-induced activation of the Raf-1/MEK/Erk signaling pathway through activation of Rac and its effector Pak kinases to promote hematopoiesis and chemotaxis. Cell Signal 2005; 17: 497–506.

    Article  CAS  PubMed  Google Scholar 

  38. Bendall LJ, Baraz R, Juarez J, Shen W, Bradstock KF . Defective p38 mitogen-activated protein kinase signaling impairs chemotaxic but not proliferative responses to stromal-derived factor-1alpha in acute lymphoblastic leukemia. Cancer Res 2005; 65: 3290–3298.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng ZJ, Zhao J, Sun Y, Hu W, Wu YL, Cen B et al. Beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4. J Biol Chem 2000; 275: 2479–2485.

    Article  CAS  PubMed  Google Scholar 

  40. Dutt P, Wang JF, Groopman JE . Stromal cell-derived factor-1 alpha and stem cell factor/kit ligand share signaling pathways in hemopoietic progenitors: a potential mechanism for cooperative induction of chemotaxis. J Immunol 1998; 161: 3652–3658.

    CAS  PubMed  Google Scholar 

  41. Ganju RK, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S et al. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 1998; 273: 23169–23175.

    Article  CAS  PubMed  Google Scholar 

  42. Lataillade JJ, Clay D, Bourin P, Herodin F, Dupuy C, Jasmin C et al. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood 2002; 99: 1117–1129.

    Article  CAS  PubMed  Google Scholar 

  43. Wang JF, Park IW, Groopman JE . Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood 2000; 95: 2505–2513.

    CAS  PubMed  Google Scholar 

  44. Eliceiri BP . Integrin and growth factor receptor crosstalk. Circ Res 2001; 89: 1104–1110.

    Article  CAS  PubMed  Google Scholar 

  45. Smith RG, Dev VG, Shannon Jr WA . Characterization of a novel human pre-B leukemia cell line. J Immunol 1981; 126: 596–602.

    CAS  PubMed  Google Scholar 

  46. Stong RC, Korsmeyer SJ, Parkin JL, Arthur DC, Kersey JH . Human acute leukemia cell line with the t(4;11) chromosomal rearrangement exhibits B lineage and monocytic characteristics. Blood 1985; 65: 21–31.

    CAS  PubMed  Google Scholar 

  47. Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 2002; 20: 592–596.

    Article  CAS  PubMed  Google Scholar 

  48. Tsai LH, White L, Raines E, Ross R, Smith RG, Cushley W et al. Expression of platelet-derived growth factor and its receptors by two pre-B acute lymphocytic leukemia cell lines. Blood 1994; 83: 51–55.

    CAS  PubMed  Google Scholar 

  49. Hendrix CW, Flexner C, MacFarland RT, Giandomenico C, Fuchs EJ, Redpath E et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 2000; 44: 1667–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schols D, Este JA, Henson G, De Clercq E . Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Res 1997; 35: 147–156.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang WB, Navenot JM, Haribabu B, Tamamura H, Hiramatu K, Omagari A et al. A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial agonists. J Biol Chem 2002; 277: 24515–24521.

    Article  CAS  PubMed  Google Scholar 

  52. D'Apuzzo M, Rolink A, Loetscher M, Hoxie JA, Clark-Lewis I, Melchers F et al. The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur J Immunol 1997; 27: 1788–1793.

    Article  CAS  PubMed  Google Scholar 

  53. Egawa T, Kawabata K, Kawamoto H, Amada K, Okamoto R, Fujii N et al. The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B-cell growth-stimulating factor. Immunity 2001; 15: 323–334.

    Article  CAS  PubMed  Google Scholar 

  54. Fedyk ER, Ryyan DH, Ritterman I, Springer TA . Maturation decreases responsiveness of human bone marrow B lineage cells to stromal-derived factor 1 (SDF-1). J Leukoc Biol 1999; 66: 667–673.

    Article  CAS  PubMed  Google Scholar 

  55. Bajetto A, Bonavia R, Barbero S, Florio T, Costa A, Schettini G . Expression of chemokine receptors in the rat brain. Ann N Y Acad Sci 1999; 876: 201–209.

    Article  CAS  PubMed  Google Scholar 

  56. Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL et al. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 2003; 63: 1969–1974.

    CAS  PubMed  Google Scholar 

  57. Juarez J, Baraz R, Gaundar S, Bradstock K, Bendall L . Interaction of interleukin-7 and interleukin-3 with the CXCL12-induced proliferation of B-cell progenitor acute lymphoblastic leukemia. Haematologica 2007; 92: 450–459.

    Article  CAS  PubMed  Google Scholar 

  58. Rezzonico R, Chicheportiche R, Imbert V, Dayer JM . Engagement of CD11b and CD11c beta2 integrin by antibodies or soluble CD23 induces IL-1beta production on primary human monocytes through mitogen-activated protein kinase-dependent pathways. Blood 2000; 95: 3868–3877.

    CAS  PubMed  Google Scholar 

  59. Rezzonico R, Imbert V, Chicheportiche R, Dayer JM . Ligation of CD11b and CD11c beta(2) integrins by antibodies or soluble CD23 induces macrophage inflammatory protein 1alpha (MIP-1alpha) and MIP-1beta production in primary human monocytes through a pathway dependent on nuclear factor-kappaB. Blood 2001; 97: 2932–2940.

    Article  CAS  PubMed  Google Scholar 

  60. Trink B, Wang G, Shahar M, Meydan N, Roifman CM . Functional platelet-derived growth factor-beta (PDGF-beta) receptor expressed on early B-lineage precursor cells. Clin Exp Immunol 1995; 102: 417–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin TH, Aplin AE, Shen Y, Chen Q, Schaller M, Romer L et al. Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts. J Cell Biol 1997; 136: 1385–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Renshaw MW, Ren XD, Schwartz MA . Growth factor activation of MAP kinase requires cell adhesion. EMBO J 1997; 16: 5592–5599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Green DR . Apoptotic pathways: the roads to ruin. Cell 1998; 94: 695–698.

    Article  CAS  PubMed  Google Scholar 

  64. Baron W, Shattil SJ, ffrench-Constant C . The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of alpha(v)beta3 integrins. EMBO J 2002; 21: 1957–1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MA and ALE were postgraduate scholars supported by the Wellcome Trust four-year PhD programme, Molecular Functions in Disease. BWO is supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Cushley.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, M., Edkins, A., Ozanne, B. et al. SDF-1 and PDGF enhance αvβ5-mediated ERK activation and adhesion-independent growth of human pre-B cell lines. Leukemia 23, 1807–1817 (2009). https://doi.org/10.1038/leu.2009.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.126

  • Springer Nature Limited

Keywords

This article is cited by

Navigation