Skip to main content

Advertisement

Log in

Long-term, antidiabetogenic effects of GLP-1 gene therapy using a double-stranded, adeno-associated viral vector

  • Original Article
  • Published:
Gene Therapy Submit manuscript

Abstract

Diabetes is characterized by insulin resistance and a reduction in insulin secretion, leading to progressive β-cell failure and loss of β-cell mass. Its central therapeutic issues are how to restore glucose responsiveness of β-cells to normal and counteract defects in insulin secretion. Native glucagon-like peptide-1 (GLP-1), which makes β-cells competent and diabetic β-cells specifically more sensitive to glucose, has a major drawback of rapid inactivation. In this study, we describe the construction and analysis of a GLP-1 plasmid and double-stranded, adeno-associated viral (dsAAV) expression vector to overcome both the rapid degradation of native GLP-1 and limitations of gene therapy using standard single-stranded AAV. Our study results demonstrate that fasting blood glucose levels of db/db obese mice decreased significantly up to 4 months after a single injection of dsAAV GLP-1, and both insulin and circulating GLP-1 levels increased in dsAAV GLP-1-infected mice. These results demonstrate that dsAAV GLP-1 has long-term, efficient transgene expression with minimal toxicity and cellular immune responses. This study suggests that GLP-1 produced by dsAAV may be an alternative to the continuous infusions required for GLP-1 peptide therapy or daily injections of GLP-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Holz IV GG, Kuhtreiber WM, Habener JF . Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7–37). Nature 1993; 361: 362–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Efanova IB, Zaitsev SV, Zhivotovsky B, Kohler M, Efendic S, Orrenius S et al. Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration. J Biol Chem 1998; 273: 33501–33507.

    Article  CAS  PubMed  Google Scholar 

  3. Bernard C, Berthault MF, Saulnier C, Ktorza A . Neogenesis vs apoptosis as main components of pancreatic beta cell mass changes in glucose-infused normal and mildly diabetic adult rats. FASEB J 1999; 13: 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  4. Holst JJ, Gromada J . Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 2004; 287: E199–E206.

    Article  CAS  PubMed  Google Scholar 

  5. Holst JJ . The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87: 1409–1439.

    Article  CAS  PubMed  Google Scholar 

  6. Drucker DJ . Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 2003; 17: 161–171.

    Article  CAS  PubMed  Google Scholar 

  7. De Leon DD, Crutchlow MF, Ham JY, Stoffers DA . Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus. Int J Biochem Cell Biol 2006; 38: 845–859.

    Article  CAS  PubMed  Google Scholar 

  8. Xu G, Stoffers DA, Habener JF, Bonner-Weir S . Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48: 2270–2276.

    Article  CAS  PubMed  Google Scholar 

  9. Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B . Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 2002; 51: 1443–1452.

    Article  CAS  PubMed  Google Scholar 

  10. Mentlein R, Gallwitz B, Schmidt WE . Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214: 829–835.

    Article  CAS  PubMed  Google Scholar 

  11. Plamboeck A, Holst JJ, Carr RD, Deacon CF . Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia 2005; 48: 1882–1890.

    Article  CAS  PubMed  Google Scholar 

  12. Yan Z, Zak R, Luxton GW, Ritchie TC, Bantel-Schaal U, Engelhardt JF . Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76: 2043–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flotte TR, Carter BJ . Adeno-associated virus vectors for gene therapy. Gene Therapy 1995; 2: 357–362.

    CAS  PubMed  Google Scholar 

  14. Xiao X, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Klein RL, Meyer EM, Peel AL, Zolotukhin S, Meyers C, Muzyczka N et al. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol 1998; 150: 183–194.

    Article  CAS  PubMed  Google Scholar 

  16. Kozlowski M, Olson DE, Rubin J, Lyszkowicz D, Campbell A, Thule PM . Adeno-associated viral delivery of a metabolically regulated insulin transgene to hepatocytes. Mol Cell Endocrinol 2007; 273: 6–15.

    Article  CAS  PubMed  Google Scholar 

  17. Flannery JG, Zolotukhin S, Vaquero MI, LaVail MM, Muzyczka N, Hauswirth WW . Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997; 94: 6916–6921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cai KX, Tse LY, Leung C, Tam PK, Xu R, Sham MH . Suppression of lung tumor growth and metastasis in mice by adeno-associated virus-mediated expression of vasostatin. Clin Cancer Res 2008; 14: 939–949.

    Article  CAS  PubMed  Google Scholar 

  19. Polyak S, Mah C, Porvasnik S, Herlihy JD, Campbell-Thompson M, Byrne BJ et al. Gene delivery to intestinal epithelial cells in vitro and in vivo with recombinant adeno-associated virus types 1, 2 and 5. Dig Dis Sci 2008; 53: 1261–1270.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X . Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Therapy 2003; 10: 2105–2111.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Zhu T, Rehman KK, Bertera S, Zhang J, Chen C et al. Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes 2006; 55: 875–884.

    Article  CAS  PubMed  Google Scholar 

  22. Drucker DJ . Glucagon-like peptides. Diabetes 1998; 47: 159–169.

    Article  CAS  PubMed  Google Scholar 

  23. Kieffer TJ, Habener JF . The glucagon-like peptides. Endocr Rev 1999; 20: 876–913.

    Article  CAS  PubMed  Google Scholar 

  24. Arakawa M, Ebato C, Mita T, Hirose T, Kawamori R, Fujitani Y et al. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents. Biochem Biophys Res Commun 2009; 390: 809–814.

    Article  CAS  PubMed  Google Scholar 

  25. Kim Chung le T, Hosaka T, Yoshida M, Harada N, Sakaue H, Sakai T et al. Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression. Biochem Biophys Res Commun 2009; 390: 613–618.

    Article  PubMed  Google Scholar 

  26. Malhotra R, Singh L, Eng J, Raufman JP . Exendin-4, a new peptide from Heloderma suspectum venom, potentiates cholecystokinin-induced amylase release from rat pancreatic acini. Regul Pept 1992; 41: 149–156.

    Article  CAS  PubMed  Google Scholar 

  27. Goke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J et al. Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 1993; 268: 19650–19655.

    CAS  PubMed  Google Scholar 

  28. Bregenholt S, Moldrup A, Blume N, Karlsen AE, Nissen Friedrichsen B, Tornhave D et al. The long-acting glucagon-like peptide-1 analogue, liraglutide, inhibits beta-cell apoptosis in vitro. Biochem Biophys Res Commun 2005; 330: 577–584.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar M, Hunag Y, Glinka Y, Prud’homme GJ, Wang Q . Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice. Gene Therapy 2007; 14: 162–172.

    Article  CAS  PubMed  Google Scholar 

  30. Parsons GB, Souza DW, Wu H, Yu D, Wadsworth SG, Gregory RJ et al. Ectopic expression of glucagon-like peptide 1 for gene therapy of type II diabetes. Gene Therapy 2007; 14: 38–48.

    Article  CAS  PubMed  Google Scholar 

  31. Lee YS, Shin S, Shigihara T, Hahm E, Liu MJ, Han J et al. Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes 2007; 56: 1671–1679.

    Article  CAS  PubMed  Google Scholar 

  32. Lee Y, Kwon MK, Kang ES, Park YM, Choi SH, Ahn CW et al. Adenoviral vector-mediated glucagon-like peptide 1 gene therapy improves glucose homeostasis in Zucker diabetic fatty rats. J Gene Med 2008; 10: 260–268.

    Article  CAS  PubMed  Google Scholar 

  33. Kotin RM . Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther 1994; 5: 793–801.

    Article  CAS  PubMed  Google Scholar 

  34. Berns KI, Linden RM . The cryptic life style of adeno-associated virus. Bioessays 1995; 17: 237–245.

    Article  CAS  PubMed  Google Scholar 

  35. Monahan PE, Samulski RJ . Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 2000; 6: 433–440.

    Article  CAS  PubMed  Google Scholar 

  36. Coura Rdos S, Nardi NB . The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J 2007; 4: 99.

    Article  PubMed  Google Scholar 

  37. Tsunekawa S, Yamamoto N, Tsukamoto K, Itoh Y, Kaneko Y, Kimura T et al. Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J Endocrinol 2007; 193: 65–74.

    Article  CAS  PubMed  Google Scholar 

  38. Ferrari FK, Samulski T, Shenk T, Samulski RJ . Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70: 3227–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McCarty DM, Monahan PE, Samulski RJ . Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Therapy 2001; 8: 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  41. Riedel MJ, Gaddy DF, Asadi A, Robbins PD, Kieffer TJ . DsAAV8-mediated expression of glucagon-like peptide-1 in pancreatic beta-cells ameliorates streptozotocin-induced diabetes. Gene Therapy 2010; 17: 171–180.

    Article  CAS  PubMed  Google Scholar 

  42. Green BD, Gault VA, Mooney MH, Irwin N, Bailey CJ, Harriott P et al. Novel dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1(7–36)amide have preserved biological activities in vitro conferring improved glucose-lowering action in vivo. J Mol Endocrinol 2003; 31: 529–540.

    Article  CAS  PubMed  Google Scholar 

  43. Seidah NG, Day R, Marcinkiewicz M, Benjannet S, Chretien M . Mammalian neural and endocrine pro-protein and pro-hormone convertases belonging to the subtilisin family of serine proteinases. Enzyme 1991; 45: 271–284.

    Article  CAS  PubMed  Google Scholar 

  44. Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G . Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 1992; 267: 16396–16402.

    CAS  PubMed  Google Scholar 

  45. Krysan DJ, Rockwell NC, Fuller RS . Quantitative characterization of furin specificity. Energetics of substrate discrimination using an internally consistent set of hexapeptidyl methylcoumarinamides. J Biol Chem 1999; 274: 23229–23234.

    Article  CAS  PubMed  Google Scholar 

  46. Leiter EH . The genetics of diabetes susceptibility in mice. FASEB J 1989; 3: 2231–2241.

    Article  CAS  PubMed  Google Scholar 

  47. Schick RR, Zimmermann JP, vorm Walde T, Schusdziarra V . Peptides that regulate food intake: glucagon-like peptide 1-(7–36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1427–R1435.

    Article  CAS  PubMed  Google Scholar 

  48. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379: 69–72.

    Article  CAS  PubMed  Google Scholar 

  49. Doyle ME, Egan JM . Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113: 546–593.

    Article  CAS  PubMed  Google Scholar 

  50. Oyadomari S, Mori M . Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11: 381–389.

    Article  CAS  PubMed  Google Scholar 

  51. Clark KR, Liu X, McGrath JP, Johnson PR . Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 1999; 10: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Wilson who gave the vector pAdΔF6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H C Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S., Lee, H. Long-term, antidiabetogenic effects of GLP-1 gene therapy using a double-stranded, adeno-associated viral vector. Gene Ther 18, 155–163 (2011). https://doi.org/10.1038/gt.2010.119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.119

  • Springer Nature Limited

Keywords

This article is cited by

Navigation