Skip to main content

Advertisement

Log in

A novel transcript of mouse interleukin-20 receptor acts on glomerular mesangial cells as an aggravating factor in lupus nephritis

  • Original Article
  • Published:
Genes & Immunity Submit manuscript

Abstract

We identified a novel soluble protein, mouse (m)IL-20R1a, generated by alternative splicing of the mIL-20R1 gene, which encodes one subunit of the receptor complex for mIL-19, mIL-20 and mIL-24. mIL-20R1a has 77.14% amino-acid identity with the extracellular domain of mIL-20R1. However, no significant interaction between mIL-20R1a and mIL-19 or mIL-20 was detected. Consequently, we aimed to clarify whether mIL-20R1a might function as a novel effector on certain cells. Competitive binding assays demonstrated that mIL-20R1a bound to cell surfaces and resulted in AKT and JNK phosphorylation in primary mesangial cells (MCs) isolated from either the wild-type mice, DBA/W mice, or the SLE-prone mice, NZB/W mice. NZB/W MCs expressed more mIL-20R1a transcript than DBA/W MCs did. Furthermore, mIL-20R1a-treated NZB/W MCs produced higher level of chemokines, renal fibrogenic factors and ROS than mIL-20R1a-treated DBA/W MCs did. These factors are involved in the pathogenesis of lupus nephritis. Endogenous mIL-20R1a was upregulated in the bladder, colon and spleen tissue of NZB/W mice. Elevated mIL-20R1a in the spleen tissue of NZB/W mice was expressed mainly in monocytes and B cells. mIL-20R1a further induced mIL-10 production by the anti-IgM antibody-stimulated B cells in NZB/W mice. Therefore, mIL-20R1a-mediated effects may exacerbate the disease outcome of lupus nephritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rose-John S, Heinrich PC . Soluble receptors for cytokines and growth factors: generation and biological function. Biochem J 1994; 300 (Part 2): 281–290.

    Article  CAS  Google Scholar 

  2. Hooper NM, Karran EH, Turner AJ . Membrane protein secretases. Biochem J 1997; 321 (Part 2): 265–279.

    Article  CAS  Google Scholar 

  3. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB . Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004; 22: 929–979.

    Article  CAS  Google Scholar 

  4. Fickenscher H, Hor S, Kupers H, Knappe A, Wittmann S, Sticht H . The interleukin-10 family of cytokines. Trends Immunol 2002; 23: 89–96.

    Article  CAS  Google Scholar 

  5. Langer JA, Cutrone EC, Kotenko S . The Class II cytokine receptor (CRF2) family: overview and patterns of receptor-ligand interactions. Cytokine Growth Factor Rev 2004; 15: 33–48.

    Article  CAS  Google Scholar 

  6. Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, West J et al. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 2002; 277: 47517–47523.

    Article  CAS  Google Scholar 

  7. Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS . IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol 2002; 169: 4288–4297.

    Article  CAS  Google Scholar 

  8. Hsing CH, Chiu CJ, Chang LY, Hsu CC, Chang MS . IL-19 is involved in the pathogenesis of endotoxic shock. Shock 2008; 29: 7–15.

    CAS  PubMed  Google Scholar 

  9. Hsing CH, Hsu CC, Chen WY, Chang LY, Hwang JC, Chang MS . Expression of IL-19 correlates with Th2 cytokines in uraemic patients. Nephrol Dial Transplant 2007; 22: 2230–2238.

    Article  CAS  Google Scholar 

  10. Hsing CH, Hsieh MY, Chen WY, Cheung So E, Cheng BC, Chang MS . Induction of interleukin-19 and interleukin-22 after cardiac surgery with cardiopulmonary bypass. Ann Thorac Surg 2006; 81: 2196–2201.

    Article  Google Scholar 

  11. Li HH, Lin YC, Chen PJ, Hsiao CH, Lee JY, Chen WC et al. Interleukin-19 upregulates keratinocyte growth factor and is associated with psoriasis. Br J Dermatol 2005; 153: 591–595.

    Article  CAS  Google Scholar 

  12. Liao SC, Cheng YC, Wang YC, Wang CW, Yang SM, Yu CK et al. IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol 2004; 173: 6712–6718.

    Article  CAS  Google Scholar 

  13. Hsieh MY, Chen WY, Jiang MJ, Cheng BC, Huang TY, Chang MS . Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun 2006; 7: 234–242.

    Article  CAS  Google Scholar 

  14. Hsing CH, Ho CL, Chang LY, Lee YL, Chuang SS, Chang MS . Tissue microarray analysis of interleukin-20 expression. Cytokine 2006; 35: 44–52.

    Article  CAS  Google Scholar 

  15. Hsu YH, Li HH, Hsieh MY, Liu MF, Huang KY, Chin LS et al. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum 2006; 54: 2722–2733.

    Article  CAS  Google Scholar 

  16. Otkjaer K, Kragballe K, Funding AT, Clausen JT, Noerby PL, Steiniche T et al. The dynamics of gene expression of interleukin-19 and interleukin-20 and their receptors in psoriasis. Br J Dermatol 2005; 153: 911–918.

    Article  CAS  Google Scholar 

  17. Caligiuri G, Kaveri SV, Nicoletti A . IL-20 and atherosclerosis: another brick in the wall. Arterioscler Thromb Vasc Biol 2006; 26: 1929–1930.

    Article  CAS  Google Scholar 

  18. Chen WY, Cheng BC, Jiang MJ, Hsieh MY, Chang MS . IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2006; 26: 2090–2095.

    Article  CAS  Google Scholar 

  19. Wei CC, Hsu YH, Li HH, Wang YC, Hsieh MY, Chen WY et al. IL-20: biological functions and clinical implications. J Biomed Sci 2006; 13: 601–612.

    Article  CAS  Google Scholar 

  20. Wei CC, Chen WY, Chen PJ, Lee YJ, Wang DH, Chen WC et al. Detection of IL-20 and its receptors on psoriasis skin. Clin Immunol 2005; 117: 65–72.

    Article  CAS  Google Scholar 

  21. Zhao L, Dong A, Gu J, Liu Z, Zhang Y, Zhang W et al. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther 2006; 13: 1011–1022.

    Article  CAS  Google Scholar 

  22. Miyahara R, Banerjee S, Kawano K, Efferson C, Tsuda N, Miyahara Y et al. Melanoma differentiation-associated gene-7 (mda-7)/interleukin (IL)-24 induces anticancer immunity in a syngeneic murine model. Cancer Gene Ther 2006; 13: 753–761.

    Article  CAS  Google Scholar 

  23. Chen WY, Cheng YT, Lei HY, Chang CP, Wang CW, Chang MS . IL-24 inhibits the growth of hepatoma cells in vivo. Genes Immun 2005; 6: 493–499.

    Article  CAS  Google Scholar 

  24. Saito Y, Miyahara R, Gopalan B, Litvak A, Inoue S, Shanker M et al. Selective induction of cell cycle arrest and apoptosis in human prostate cancer cells through adenoviral transfer of the melanoma differentiation-associated -7 (mda-7)/interleukin-24 (IL-24) gene. Cancer Gene Ther 2005; 12: 238–247.

    Article  CAS  Google Scholar 

  25. Yacoub A, Mitchell C, Lebedeva IV, Sarkar D, Su ZZ, McKinstry R et al. mda-7 (IL-24) Inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther 2003; 2: 347–353.

    Article  CAS  Google Scholar 

  26. Sarkar D, Su ZZ, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K et al. mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci USA 2002; 99: 10054–10059.

    Article  CAS  Google Scholar 

  27. Dumoutier L, Lejeune D, Colau D, Renauld JC . Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. J Immunol 2001; 166: 7090–7095.

    Article  CAS  Google Scholar 

  28. Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP et al. Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 2001; 166: 7096–7103.

    Article  CAS  Google Scholar 

  29. Xu W, Presnell SR, Parrish-Novak J, Kindsvogel W, Jaspers S, Chen Z et al. A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc Natl Acad Sci USA 2001; 98: 9511–9516.

    Article  CAS  Google Scholar 

  30. Wei CC, Ho TW, Liang WG, Chen GY, Chang MS . Cloning and characterization of mouse IL-22 binding protein. Genes Immun 2003; 4: 204–211.

    Article  CAS  Google Scholar 

  31. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 2001; 104: 9–19.

    Article  CAS  Google Scholar 

  32. Kanegae K, Tamura M, Kabashima N, Serino R, Tokunaga M, Oikawa S et al. Synergistic induction of monocyte chemoattractant protein-1 by integrins and platelet-derived growth factor via focal adhesion kinase in MCs. Nephrol Dial Transplant 2005; 20: 2080–2088.

    Article  CAS  Google Scholar 

  33. Dijstelbloem HM, van de Winkel JG, Kallenberg CG . Inflammation in autoimmunity: receptors for IgG revisited. Trends Immunol 2001; 22: 510–516.

    Article  CAS  Google Scholar 

  34. Cooke MS, Mistry N, Wood C, Herbert KE, Lunec J . Immunogenicity of DNA damaged by reactive oxygen species--implications for anti-DNA antibodies in lupus. Free Radic Biol Med 1997; 22: 151–159.

    Article  CAS  Google Scholar 

  35. Klahr S, Morrissey JJ . The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease. Kidney Int Suppl 2000; 75: S7–S14.

    Article  CAS  Google Scholar 

  36. Suzuki Y, Ruiz-Ortega M, Egido J . Angiotensin II: a double-edged sword in inflammation. J Nephrol 2000; 13 (Suppl 3): S101–S110.

    PubMed  Google Scholar 

  37. Abboud HE . Role of platelet-derived growth factor in renal injury. Annu Rev Physiol 1995; 57: 297–309.

    Article  CAS  Google Scholar 

  38. Handwerger BS, Rus V, da Silva L, Via CS . The role of cytokines in the immunopathogenesis of lupus. Springer Semin Immunopathol 1994; 16: 153–180.

    Article  CAS  Google Scholar 

  39. Theofilopoulos AN, Lawson BR . Tumour necrosis factor and other cytokines in murine lupus. Ann Rheum Dis 1999; 58 (Suppl 1): I49–I55.

    Article  CAS  Google Scholar 

  40. Iida H, Seifert R, Alpers CE, Gronwald RG, Phillips PE, Pritzl P et al. Platelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat. Proc Natl Acad Sci USA 1991; 88: 6560–6564.

    Article  CAS  Google Scholar 

  41. Nakamura T, Ebihara I, Nagaoka I, Tomino Y, Koide H . Renal platelet-derived growth factor gene expression in NZB/W F1 mice with lupus and ddY mice with IgA nephropathy. Clin Immunol Immunopathol 1992; 63: 173–181.

    Article  CAS  Google Scholar 

  42. Jackson M, Ahmad Y, Bruce IN, Coupes B, Brenchley PE . Activation of transforming growth factor-beta1 and early atherosclerosis in systemic lupus erythematosus. Arthritis Res Ther 2006; 8: R81.

    Article  Google Scholar 

  43. Zhang ZG, Liu XG, Chen GP, Zhang XR, Guo MY . Significance of MMP-2 and TIMP-2 mRNA expressions on glomerular cells in the development of glomerulosclerosis. Chin Med Sci J 2004; 19: 84–88.

    PubMed  Google Scholar 

  44. Linker-Israeli M, Honda M, Nand R, Mandyam R, Mengesha E, Wallace DJ et al. Exogenous IL-10 and IL-4 downregulate IL-6 production by SLE-derived PBMC. Clin Immunol 1999; 91: 6–16.

    Article  CAS  Google Scholar 

  45. Strand V . Monoclonal antibodies and other biologic therapies. Lupus 2001; 10: 216–221.

    Article  CAS  Google Scholar 

  46. Harris RC, Martinez-Maldonado M . Angiotensin II-mediated renal injury. Miner Electrolyte Metab 1995; 21: 328–335.

    CAS  PubMed  Google Scholar 

  47. Dean GS, Tyrrell-Price J, Crawley E, Isenberg DA . Cytokines and systemic lupus erythematosus. Ann Rheum Dis 2000; 59: 243–251.

    Article  CAS  Google Scholar 

  48. Ishida H, Muchamuel T, Sakaguchi S, Andrade S, Menon S, Howard M . Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J Exp Med 1994; 179: 305–310.

    Article  CAS  Google Scholar 

  49. Ka SM, Cheng CW, Shui HA, Wu WM, Chang DM, Lin YC et al. Mesangial cells of lupus-prone mice are sensitive to chemokine production. Arthritis Res Ther 2007; 9: R67.

    Article  Google Scholar 

  50. Song SW, Fuller GN, Khan A, Kong S, Shen W, Taylor E et al. IIp45, an insulin-like growth factor binding protein 2 (IGFBP-2) binding protein, antagonizes IGFBP-2 stimulation of glioma cell invasion. Proc Natl Acad Sci USA 2003; 100: 13970–13975.

    Article  CAS  Google Scholar 

  51. Wei CC, Chen WY, Wang YC, Chen PJ, Lee JY, Wong TW et al. Detection of IL-20 and its receptors on psoriatic skin. Clin Immunol 2005; 117: 65–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National Science Council (NSC 96-2628-B-006 -055 -MY3), Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-S Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, CC., Chang, MS. A novel transcript of mouse interleukin-20 receptor acts on glomerular mesangial cells as an aggravating factor in lupus nephritis. Genes Immun 9, 668–679 (2008). https://doi.org/10.1038/gene.2008.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.61

  • Springer Nature Limited

Keywords

This article is cited by

Navigation