Skip to main content
Log in

A folding transition and novel zinc finger accessory domain in the transcription factor ADR1

  • Article
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

Abstract

The region responsible for sequence-specific DNA binding by the transcription factor ADR1 contains two Cys2–His2 zinc fingers and an additional N-terminal proximal accessory region (PAR). The N-terminal (non-finger) PAR is unstructured in the absence of DNA and undergoes a folding transition on binding the DNA transcription target site. We have used a set of HN-HN NOEs derived from a perdeuterated protein–DNA complex to describe the fold of ADR1 bound to the UAS1 binding site. The PAR forms a compact domain consisting of three antiparallel strands that contact A-T base pairs in the major groove. The three-strand domain is a novel fold among all known DNA-binding proteins. The PAR shares sequence homology with the N-terminal regions of other zinc finger proteins, suggesting that it represents a new DNA-binding module that extends the binding repertoire of zinc finger proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The amino acid and nucleotide sequences of the constructs used in these studies.
Figure 2: Constraint distribution and pairwise r.m.s. deviations.
Figure 3: An individual superposition of the calculated family of 25 structures of the first and second zinc fingers of ADR1.
Figure 4: Strip-plots taken from 3D 15N-edited NOESY spectra highlighting residues in the N-terminal region that undergo a folding transition on binding the UAS1.
Figure 5: A backbone alignment of the global fold of the N-terminal region, residues 88–103, as determined by HN-HN NOE contacts.
Figure 6: An NMR spectrum and diagram of the observed and inferred intermolecular contacts.
Figure 7: A model of ADR1-DBD bound to the UAS1, showing both zinc fingers and the N-terminal region.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Thukral, S.K., Morrison, M.L. & Young, E.T. Alanine scanning site-directed mutagenesis of the zinc fingers of transcription factor ADR1: residues that contact DNA and that transactivate. Proc. Natl. Acad. Sci. USA 88, 9188–9192 (1991).

    Article  CAS  Google Scholar 

  2. Thukral, S.K., Eisen, A. & Young, E.T. Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression. Mol. Cell. Biol. 11, 1566–1577 (1991).

    Article  CAS  Google Scholar 

  3. Thukral, S.K., Morrison, M.L. & Young, E.T. Mutations in the zinc fingers of ADR1 that change the specificity of DNA binding and transactivation. Mol. Cell. Biol. 12, 2784–2792 ( 1992).

    Article  CAS  Google Scholar 

  4. Cheng, C. et al. Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Mol. Cell. Biol. 14, 3842–3852 (1994).

    Article  CAS  Google Scholar 

  5. Camier, S., Kacherovsky, N. & Young, E.T. A mutation outside the two zinc fingers of ADR1 can suppress defects in either finger. Mol. Cell. Biol. 12, 5758–5767 (1992).

    Article  CAS  Google Scholar 

  6. Thukral, S.K., Tavianini, M.A., Blumberg, H. & Young, E.T. Localization of a minimal binding domain and activation regions of yeast regulatory protein ADR1. Mol. Cell. Biol. 9, 2360– 2369 (1989).

    Article  CAS  Google Scholar 

  7. Jacobs, G.H. Determination of the base recognition positions of zinc fingers from sequence analysis. EMBO J. 11, 4507– 4517 (1992).

    Article  CAS  Google Scholar 

  8. Hoffman, R.C., Horvath, S.J. & Klevit, R.E. Structures of DNA-binding mutant zinc finger domains: implications for DNA binding. Protein Sci. 2, 951–965 (1993).

    Article  CAS  Google Scholar 

  9. Bernstein, B.E., Hoffman, R.C., Horvath, S., Herriott, J.R. & Klevit, R.E. Structure of a histidine-X4-histidine zinc finger domain: insights into ADR1/UAS1 protein–DNA recognition. Biochemistry 33, 4460– 4470 (1994).

    Article  CAS  Google Scholar 

  10. Schmiedeskamp, M. & Klevit, R.E. Paramagnetic cobalt as a probe of the orientation of an accessory DNA-binding region of the yeast ADR1 zinc-finger protein. Biochemistry 36 , 14003–14011 (1997).

    Article  CAS  Google Scholar 

  11. Schmiedeskamp, M., Rajagopal, P. & Klevit, R.E. NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1. Protein Sci. 6, 1835–1848 (1997).

    Article  CAS  Google Scholar 

  12. Hyre, D.E. & Klevit, R.E. A disorder-to-order transition coupled to DNA binding in the essential zinc-finger DNA-binding of yeast ADR1 elucidated by backbone dynamics and proton exchange. J. Mol. Biol. 279, 929–943 ( 1998).

    Article  CAS  Google Scholar 

  13. Sklenar, V., Piotto, M., Leppik, R. & Saudek, V. Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J. Magn. Reson. A 102, 241–245 (1993).

    Article  CAS  Google Scholar 

  14. Zhang, O., Kay, L.E., Oliver, J.P. & D., F.-K.J. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed-field gradient NMR technology. J. Biomol. NMR 4, 845–858 (1994).

    Article  CAS  Google Scholar 

  15. Majumdar, A. & Zuiderweg, R.P. Improved 13C-resolved HSQC-NOESY spectra in H2O, using pulsed-field gradients. J. Magn. Reson. B 102, 242–244 (1993).

    Article  CAS  Google Scholar 

  16. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. An alternative 3D NMR technique for correlating backbone 15N with sidechain Hβ resonances in larger proteins. J. Magn. Reson. 95, 636–641 (1991).

    CAS  Google Scholar 

  17. Nigles, M., Clore, G.M. & Gronenborn, A.M. Determination of the three dimensional structure of proteins from interproton distance data by hybrid distance geometry–dynamical simulated-annealing calculations. FEBS Lett. 229, 317–324 (1988).

    Article  Google Scholar 

  18. Brunger, A.T. X-PLOR manual version 3.1: a system for crystallography and NMR (Yale University Press, New Haven CT; 1993).

    Google Scholar 

  19. Cheng, C. & Young, E.T. A single amino acid substitution in zinc finger 2 of Adr1p changes its binding specificity at two positions in UAS1. J. Mol. Biol. 251, 1– 8 (1995).

    Article  CAS  Google Scholar 

  20. Elrod-Erickson, M., Rould, M.A., Nekluddova, L. & Pabo, C.O. Zif268 protein–DNA complex refined at 1.6Å: a model system for understanding zinc-finger–DNA interactions. Structure 4, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  21. Foster, M.P. et al. Domain packing and dynamics in the DNA complex of the N-terminal zinc fingers of TFIIIA. Nature Struct. Biol. 4, 605–608 (1997).

    Article  CAS  Google Scholar 

  22. Omichinski, J.G. et al. High-resolution solution structure of the double Cys 2–His2 zinc finger from the human enhancer protein MBP-1. Biochemistry 31, 3907– 3917 (1992).

    Article  CAS  Google Scholar 

  23. Nakaseko, Y., Neuhaus, D., Klug, A. & Rhodes, D. Adjacent zinc-finger motifs in multiple zinc-finger peptides from SWI5 form structurally independent, flexibly linked domains. J. Mol. Biol. 228, 619–636 (1992).

    Article  CAS  Google Scholar 

  24. Gardner, K.H., Rosen, M.K. & Kay, L.E. Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36, 1389–1401 (1997).

    Article  CAS  Google Scholar 

  25. Venters, R.A., Metzler, W.J., Spicer, L.D., Mueller, L. & Farmer, B.T. Use of 1HN-1HN NOEs to determine protein global folds in perdeuterated protein. J. Am. Chem. Soc. 117, 9592– 9593 (1995).

    Article  CAS  Google Scholar 

  26. Dutnall, R.N., Neuhaus, D. & Rhodes, D. The solution structure of the first zinc finger domain of SWI5: a novel structural extension to a common fold. Structure 4, 599–611 ( 1996).

    Article  CAS  Google Scholar 

  27. Fairall, L., Schwabe, J.W.R., Chapman, L., Finch, J.T. & Rhodes, D. The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition. Nature 366, 483–487 (1993).

    Article  CAS  Google Scholar 

  28. Omichinski, J.G., Pedone, P.V., Felsenfeld, G., Gronenborn, A.M. & Clore, G.M. The solution structure of a specific GAGA factor–DNA complex reveals a modular binding mode. Nature Struct. Biol. 4, 122–132 (1997).

    Article  CAS  Google Scholar 

  29. Pavletich, N.P. & Pabo, C.O. Zinc finger–DNA recognition: crystal structure of Zif268–DNA complex at 2.1Å. Science 252, 809–817 (1991).

    Article  CAS  Google Scholar 

  30. Cook, W.J. et al. Mutations on the zinc-finger region of yeast regulator protein ADR1 affect both DNA binding and transcription activation. J. Biol. Chem. 269, 9374–9379 ( 1994).

    CAS  PubMed  Google Scholar 

  31. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277– 293 (1995).

    Article  CAS  Google Scholar 

  32. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  33. Folmer, R.H., Hilbers, C.W., Konings, R.N. & Higles, M. Floating stereospecific assignment revisited: application to an 18kD protein and comparison with J-coupling data. J. Biomol. NMR 9, 245–258 (1997).

    Article  CAS  Google Scholar 

  34. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  35. Merritt, E.A. & Murphy, M.E.P. Raster3D Version 2.0—a program for photorealistic molecular graphics. Acta. Crystallogr. D 50, 869–873 ( 1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E.T. Young and C. Rohl for their helpful comments and suggestions in preparing this manuscript. We thank P. Rajagopal for the generous help with NMR experiment implementation and data collection. This work was supported by a grant from the National Institutes of Health. P.M.B. (Department of Biochemistry) was supported by a Public Health Service National Research Award from the National Institute of General Medical Sciences. L.E.S. (Molecular and Cellular Biology Program) was supported by a NIH predoctoral traineeship in Molecular Biophysics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel E. Klevit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowers, P., Schaufler, L. & Klevit, R. A folding transition and novel zinc finger accessory domain in the transcription factor ADR1. Nat Struct Mol Biol 6, 478–485 (1999). https://doi.org/10.1038/8283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8283

  • Springer Nature America, Inc.

This article is cited by

Navigation