Skip to main content
Log in

Dynamics of perceptual oscillations in form vision

  • Article
  • Published:

From Nature Neuroscience

View current issue Submit your manuscript

Abstract

Certain periodic dot patterns (Marroquin patterns) generate a percept of dynamically oscillating circles, and analogous effects were explored by op artists in the 1960s. Here we show psychophysically that circles are perceived in these patterns only around specific points that are quantitatively predicted by a neural model of configural units hypothesized to reside in cortical area V4. Circles superimposed on the pattern mask perception of illusory circles. A neural model of lateral inhibitory interactions among V4 configural units showing spike-frequency adaptation quantitatively accounts for the human data. The model is consistent with ideas on the neural basis of attention in V4, and it suggests that attention may be biased via neuromodulation of slow hyperpolarizing potentials in cortical neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Patterns generating percepts of circular or ellipsoidal structure.
Figure 2: Visibility of illusory circles centered at ten different points in the Marroquin pattern.
Figure 3: Masking of illusory circle visibility.
Figure 5: Schematic of the complete V4 concentric unit dynamical model illustrated both in perspective (left) and in cross-section (right) for clarity.
Figure 4: Pseudocolor representation of model V4 concentric unit8 responses to the Marroquin pattern.
Figure 6: Comparison of model net work responses and human data.

Similar content being viewed by others

References

  1. Barrett, C. Op Art (Studio Vista, London, 1970).

  2. Wade, N. J. Op art and visual perception. Perception 7, 21–46 (1977).

    Article  Google Scholar 

  3. Marroquin, J. L. Human Visual Perception of Structure. Master's thesis, MIT ( 1976).

  4. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information 49–50 (Freeman, San Francisco, 1982).

  5. Stevens, K. A. & Brookes, A. Detecting structure by symbolic constructions on tokens. Comput. Graph. Image Process. 37, 238–260 (1987).

    Article  Google Scholar 

  6. Glass, L. Moiré effect from random dots. Nature 223, 578–580 (1969).

    Article  CAS  PubMed  Google Scholar 

  7. Glass, L. & Pérez, R. Perception of random dot interference patterns. Nature 246, 360– 362 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Wilson, H. R., Wilkinson, F. & Asaad, W. Concentric orientation summation in human form vision . Vision Res. 37, 2325– 2330 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Wilson, H. R. & Wilkinson, F. Detection of global structure in Glass patterns: implications for form vision. Vision Res. 38, 2933–2947 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Gallant, J. L., Braun, J. & Van Essen, D.C. Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 259, 100 –103 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Gallant, J. L., Connor, C. E., Rakshit, S., Lewis, J. W. & Van Essen, D.C. Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J. Neurophysiol. 76, 2718–2739 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  12. Kobatake, E. & Tanaka, K. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex . J. Neurophysiol. 71, 856– 867 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Mishkin, M., Ungerleider, L. G. & Macko, K. A. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414– 417 (1983).

    Article  Google Scholar 

  14. Van Essen, D. C., Anderson, C. H. & Felleman, D.J. Information processing in the primate visual system: an integrated systems perspective. Science 255, 419–423 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Allison, T., Puce, A., Spencer, D. D. & McCarthy, G. Electrophysiological studies of human face perception. I: Potentials generated in ocippitotemporal cortex by face and non-face stimuli. Cereb. Cortex 9, 415–430 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Wilson, H. R., Wilkinson, F., Lin, L. M. & Castillo, M. Perception of head orientation. Vision Res. (in press).

  17. O' Craven, K. M., Downing, P. E. & Kanwisher, N. fMRI evidence for objects as the units of attentional selection. Nature 401, 584– 587 (1999).

    Article  Google Scholar 

  18. Motter, B. C. Neural correlates of feature selective memory and pop-out in extrastriate area V4. J. Neurosci. 14, 2190– 2199 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Connor, C. E., Preddie, D. C., Gallant, J. L. & Van Essen, D. C. Spatial attention effects in macaque area V4. J. Neurosci. 17, 3201–3214 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431– 441 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193– 222 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Fox, R. & Herrmann, J. Stochastic properties of binocular rivalry alternations. Percept. Psychophys. 2, 432–436 (1967).

    Article  Google Scholar 

  24. Blake, R. A neural theory of binocular rivalry. Psychol. Rev. 96, 145–167 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Dobbins, A., Zucker, S. W. & Cynader, M. S. Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature 329, 438 –441 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Wilson, H. R. & Richards, W. A. Curvature and separation discrimination at texture boundaries. J. Opt. Soc. Am. A 9, 1653–1662 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Wilson, H. R. Spikes, Decisions, and Actions: Dynamical Foundations of Neuroscience (Oxford Univ. Press, Oxford, 1999).

  28. Connors, B. W. & Gutnick, M. J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Foehring, R. C., Lorenzon, N. M., Herron, P. & Wilson, C. J. Correlation of physiologically and morphologically identified neuronal types in human association cortex in vitro. J. Neurophysiol. 66, 1825–1837 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Lorenzon, N. M. & Foehring, R. C. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J. Neurophysiol. 67, 350– 363 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Naka, K. I. & Rushton, W. A. S-potentials from colour units in the retina of fish. J. Physiol. (Lond.) 185, 584–599 (1966).

    Google Scholar 

  32. Albrecht, D. G. & Hamilton, D. B. Striate cortex of monkey and cat: contrast response function. J. Neurophysiol. 48, 217–237 ( 1982).

    Article  CAS  PubMed  Google Scholar 

  33. Sclar, G., Maunsell, J. H. R. & Lennie, P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 30, 1 –10 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. McCormick, D. A. & Williamson, A. Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc. Natl. Acad. Sci. USA 86, 8098– 8102 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borsellino, A., De Marco, A., Allazetta, A., Rinesi, S. & Bartolini, B. Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik 10, 139–144 (1972).

    Article  CAS  PubMed  Google Scholar 

  36. Lehky, S. An astable multivibrator model of binocular rivalry. Perception 17, 215–228 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  37. Richards, W., Wilson, H. R. & Sommer, M. A. Chaos in percepts? Biol. Cybern. 70, 345–349 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Lehky, S. R. Binocular rivalry is not chaotic. Proc. R. Soc. Lond. B Biol. Sci. 259, 71–76 ( 1995).

    Article  CAS  Google Scholar 

  39. Wade, N. J. Distortions and disappearances of geometrical patterns. Perception 6, 407–433 ( 1977).

    Article  CAS  PubMed  Google Scholar 

  40. Koch, C. & Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985).

    CAS  PubMed  Google Scholar 

  41. Tsotsos, J. K. Analyzing vision at the complexity level. Behav. Brain Sci. 13, 423–469 (1990).

    Article  Google Scholar 

  42. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  43. De Weerd, P., Peralta, M. R., Desimone, R. & Ungerleider, L. G. Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nat. Neurosci. 2, 753– 758 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Reynolds, J. H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736– 1753 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zipser, K., Lamme, V. A. F. & Schiller, P. H. Contextual modulation in primary visual cortex. J. Neurosci. 16, 7376–7389 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Posner, M. I., Cohen, Y., Choate, L. S., Hockey, R. & Maylor, E. in Preparatory States and Processes (eds. Kornblum, S. & Requin, J.) 49–65 (Erlbaum, Hillsdale, New Jersey, 1984).

  47. Maylor, E. A. & Hockey, R. J. Inhibitory component of externally controlled covert orienting in visual space. J. Exp. Psychol. Hum. Percept. Perform. 11, 777–787 (1985).

    Article  CAS  PubMed  Google Scholar 

  48. Wilson, H. R. in Spatial Vision (ed. Regan, D.) 64–86 (MacMillan, London, 1991).

Download references

Acknowledgements

This research was supported in part by NIH grant #EY02158 to H.R.W., by a grant from Research to Prevent Blindness to the University of Chicago and by NSERC grant #OGP0007551 (Canada) to F.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh R. Wilson.

Supplementary information

41593_2000_BFnn0200_170_MOESM1_ESM.qt

Supplementary Information (QT 1.57 MB)

Requires quicktime plug-in, download quicktime now: http://www.apple.com/quicktime/

This animation illustrates the time course of the solution to equation (2) in response to stimulation by a Marroquin pattern. The small +-shaped patches represent islands of active model V4 neurons in the two-dimensional network. As time evolves, activity vanishes at some points and reappears at others because of spike-frequency adaptation and competitive inhibition. Superimposed circles illustrate the percept signaled by the active model neurons in response to the Marroquin pattern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, H., Krupa, B. & Wilkinson, F. Dynamics of perceptual oscillations in form vision. Nat Neurosci 3, 170–176 (2000). https://doi.org/10.1038/72115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72115

  • Springer Nature America, Inc.

This article is cited by

Navigation