Skip to main content
Log in

Reply

Have quantum scars been observed?

  • Scientific Correspondence
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Fromhold et al. reply — Unstable but periodic classical orbits are of fundamental importance in quantum chaology6,7. They produce regular clustering of the energy levels6 and certain states exhibit regions of enhanced probability density or ‘scars’ in the neighbourhood of the classical periodic trajectories2. The scarring effect seems to have been unexpected in view of the instability of the periodic orbits8. The typical trajectory is chaotic and irregular, which would be expected to correspond to wavefunctions exhibiting irregular and diffuse patterns of probability density. We recently showed1 that scarred and unscarred states can make very different contributions to a physically measurable quantity, in our case the tunnel current through a semiconductor device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Probability density plots for two neighbouring eigenfunctions of the 22-nm-wide quantum well described in ref 1.

References

  1. Wilkinson, P. B. et al. Nature 380, 608–610 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Heller, E. J. Phys. Rev. Lett. 53, 1515–1518 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  3. Fromhold, T. M. et al. Solid State Electron. 40, 7–14 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Eckhardt, B., Hose, G. & Pollak, E. Phys. Rev. A 39, 3776–3793 (1989).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Garton, W. R. S. & Tomkins, F. S. Astrophys. J. 158, 839–845 (1969).

    Article  ADS  Google Scholar 

  6. Berry, M. V. Proc. R. Soc. Lond. A 413, 183–198 (1987).

    Article  ADS  Google Scholar 

  7. Gutzwiller, M. C. Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

  8. Bogomolny, E. B. Physica D 31, 169–189 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  9. Holle, A. et al. Phys. Rev. Lett. 61, 161–164 (1988).

    Google Scholar 

  10. Wintgen, D. & Hönig, A. Phys. Rev. Lett. 63, 1467–1470 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Heller, E. J. Nature 380, 583–584 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Müller, K. & Wintgen, D. J. Phys. B 27, 2693–2718 (1994).

    Article  ADS  Google Scholar 

  13. Fromhold, T. M. et al. Phys. Rev. Lett. 75, 1142–1144 (1995).

    Google Scholar 

  14. Fromhold, T. M. et al. Phys. Rev. Lett. 72, 2608–2611 (1994).

    Google Scholar 

  15. de Polavieja, G. G. et al. Phys. Rev. Lett. 73, 1613–1616 (1994).

    Google Scholar 

  16. Sridhar, S. & Heller, E. J. Phys. Rev. A 46, R1728–R1731 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fromhold, T., Sheard, F., Eaves, L. et al. Have quantum scars been observed?. Nature 387, 864 (1997). https://doi.org/10.1038/43099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/43099

  • Springer Nature Limited

This article is cited by

Navigation