Skip to main content
Log in

Real-space imaging of an orbital Kondo resonance on the Cr(001) surface

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The Kondo effect1 is usually connected with the interaction between a localized spin moment and itinerant electrons. This interaction leads to the formation of a narrow resonance at the Fermi level, which is called the Abrikosov–Suhl or Kondo resonance2. Scanning tunnelling microscopy is an ideal technique for real-space investigations of complicated electronic structures3,4 and many-body phenomena, such as the formation of the Kondo resonance5,6,7,8 or d-wave pairing in high-Tc superconductors9. Theory has predicted that similar, Kondo-like many-electron resonances are possible for scattering centres with orbital instead of spin degrees of freedom—the quadruple momenta in uranium-based compounds or two-level systems in metallic glasses are examples of such ‘pseudo-Kondo’ scattering centres10. Here we present evidence for the orbital Kondo resonance on a transition-metal surface. Investigations of an atomically clean Cr(001) surface at low temperature using scanning tunnelling microscopy reveal a very narrow resonance at 26 meV above the Fermi level, and enable us to visualize the orbital character of the corresponding state. The experimental data, together with many-body calculations, demonstrate that the observed resonance is an orbital Kondo resonance formed by two degenerate dxz, dyz surface states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Tunnelling spectroscopy on Cr(001).
Figure 2: Visualization of the orbital Kondo resonance on Cr(001).
Figure 3: Formation of the orbital Kondo resonance.

Similar content being viewed by others

References

  1. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  ADS  CAS  Google Scholar 

  2. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  3. Stroscio, J. A., Pierce, D. T., Davies, A., Celotta, R. J. & Weinert, M. Tunneling spectroscopy of bcc (001) surface states. Phys. Rev. Lett. 75, 2960–2963 (1996).

    Article  ADS  Google Scholar 

  4. Heinze, S. et al. Real space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 288, 1805–1808 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom. Science 280, 567–569 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Li, J., Schneider, W.-D., Berndt, R. & Delley, D. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Odom, T. W., Huang, J.-L., Cheung, C. L. & Lieber, C. M. Magnetic clusters on single-walled carbon nanotubes: the Kondo effect in a one-dimensional host. Science 290, 1549–1552 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ. Nature 403, 746–750 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Cox, D. L. & Zawadowski, A. Exotic Kondo effects in metals: magnetic ions in a crystalline electric field and tunneling centers. Adv. Phys. 47, 599–942 (1998).

    Article  CAS  Google Scholar 

  11. van der Wielen, M. C. M. M., van Roij, A. J. A. & van Kempen, H. Direct observation of Friedel oscillations around Incorporated SiGa dopants in GaAs by low-temperature scanning tunneling microscopy. Phys. Rev. Lett. 76, 1075–1078 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Balatsky, A. V. Superconductivity: from obscurity to impurity. Nature 403, 717–718 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Crommie, M. F., Luts, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Schmid, M., Pinczolits, M., Hebenstreit, W. & Varga, P. Segregation of impurities on Cr(001) studied by AES and STM. Surf. Sci. 377, 1023–1027 (1997).

    Article  ADS  Google Scholar 

  15. Fu, C. L. & Freeman, A. J. Surface ferromagnetism of Cr(001). Phys. Rev. B 33, 1755–1761 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Klebanoff, L. E., Victora, R. H., Falicov, L. M. & Shirley, D. A. Experimental and theoretical investigations of Cr(001) surface electronic structure. Phys. Rev. B 32, 1997–2005 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Kleiber, M., Bode, M., Ravlic, R. & Wiesendanger, R. Topology-induced spin frustration at the Cr(001) surface studied by spin-polarized scanning tunneling spectroscopy. Phys. Rev. Lett. 85, 4606–4609 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Jarrell, M. Symmetrical periodic Anderson model in infinite dimensions. Phys. Rev. B 51, 7429–7440 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Hermsen and J. Gerritsen for technical assistance, and A. Keen for a reading of the manuscript. This work was supported by FOM and NWO.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnychenko, O., de Kort, R., Katsnelson, M. et al. Real-space imaging of an orbital Kondo resonance on the Cr(001) surface. Nature 415, 507–509 (2002). https://doi.org/10.1038/415507a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415507a

  • Springer Nature Limited

This article is cited by

Navigation