Skip to main content
Log in

Magneto-optical observation of twisted vortices in type-II superconductors

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

When magnetic flux penetrates a type-II superconductor, it does so as quantized flux lines or vortex lines, so called because each is surrounded by a supercurrent vortex. Interactions between such vortices lead to a very rich and well characterized phenomenology for this 'mixed state'. But an outstanding question remains: are individual vortex lines 'strong', or can they easily be cut and made to pass through one another? The concept of vortex cutting was originally proposed to account for dissipation observed in superconducting wires oriented parallel to an applied magnetic field, where the vortex lines and transport current should be in a force-free configuration1–6. Previous experiments, however, have been unable to establish the vortex topology in the force-free configuration or the size of the energy barrier for vortex cutting. Here we report magneto-optical images of YBa2Cu3O7–δ samples in the force-free configuration which show that thousands of vortex lines can twist together to form highly stable structures. In some cases, these 'vortex twisters' interact with one another to produce wave-like dynamics. Our measurements also determine directly the current required to initiate vortex cutting, and show that it is much higher than that needed to overcome the pinning of vortices by material defects. This implies that thermodynamic phases of entangled vortices7–10 are intrinsically stable and may occupy a significant portion of the mixed-state phase diagram for type-II superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, A. M. & Evetts, J. E. Adv. Phys. 21, 199–428 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Timms, W. E. & Walmsley, D. G. J. Phys. F 5, 287–306 (1975).

    Article  ADS  CAS  Google Scholar 

  3. LeBlanc, M. A. R. et al. Phys. Rev. Lett. 14, 704–707 (1965); 66, 3309–3312 (1991); 71, 3367–3370 (1993).

    Article  ADS  Google Scholar 

  4. Fillion, G., Gauthier, R. & LeBlanc, M. A. R. Phys. Rev. Lett. 43, 86–89 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Clem, J. R. Phys. Rev. B 26, 2463–2473 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Brandt, E. H. Rep. Prog. Phys. 58, 1456–1594 (1995).

    Article  ADS  Google Scholar 

  7. Nelson, D. R. Phys. Rev. Lett. 60, 1973–1977 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Fisher, M. P. A. Phys. Rev. Lett. 62, 1415–1419 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Brandt, E. H. & Sudbø, A. Phys. Rev. Lett. 66, 2278 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Obukhov, S. P. & Rubinstein, M. Phys. Rev. Lett. 66, 2279 (1991).

    Article  ADS  CAS  Google Scholar 

  11. DeSorbo, W. & Healy, W. A. Cryogenics 4, 257–326 (1964).

    Article  ADS  CAS  Google Scholar 

  12. Durán, C. A. et al. Nature 357, 474–477 (1992).

    Article  ADS  Google Scholar 

  13. Welp, U. et al. Nature 376, 44–46 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Dorosinskii, L. A. et al. Physica C 203, 149–156 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Erb, A., Walker, E. & Flükiger, R. Physica C 258, 9–20 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Schilling, A. et al. Nature 382, 791–793 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Roulin, M. et al. J. Low. Temp. Phys. 105, 1099–1104 (1995).

    Article  ADS  Google Scholar 

  18. Indenbom, M. V. et al. Physica C 226, 325–332 (1994).

    Article  ADS  CAS  Google Scholar 

  19. D'Anna, G. et al. Europhys. Lett. 25, 225–230 (1994).

    Article  ADS  CAS  Google Scholar 

  20. André, M.-O. et al. Proc. 7th Int. Workshop on Critical Currents (ed. Weber, H. W.) 276–279 (World Scientific, Singapore, 1994).

    Google Scholar 

  21. Meissner, H. Phys. Rev.B 97, 1627–1633 (1955); 101, 31–36 (1956).

    Article  ADS  Google Scholar 

  22. Nabarro, F. R. N., Bazinski, Z. S. & Holt, D. B. Adv. Phys. 13, 193–323 (1964).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indenbom, M., van der Beek, C., Berseth, V. et al. Magneto-optical observation of twisted vortices in type-II superconductors. Nature 385, 702–705 (1997). https://doi.org/10.1038/385702a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385702a0

  • Springer Nature Limited

This article is cited by

Navigation