Skip to main content
Log in

Geometry and physics of knots

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

KNOTS are usually categorized in terms of topological properties that are invariant under changes in a knot's spatial configuration1–4. Here we approach knot identification from a different angle, by considering the properties of particular geometrical forms which we define as 'ideal'. For a knot with a given topology and assembled from a tube of uniform diameter, the ideal form is the geometrical configuration having the highest ratio of volume to surface area. Practically, this is equivalent to determining the shortest piece of tube that can be closed to form the knot. Because the notion of an ideal form is independent of absolute spatial scale, the length-to-diameter ratio of a tube providing an ideal representation is constant, irrespective of the tube's actual dimensions. We report the results of computer simulations which show that these ideal representations of knots have surprisingly simple geometrical properties. In particular, there is a simple linear relationship between the length-to-diameter ratio and the crossing number—the number of intersections in a two-dimensional projection of the knot averaged over all directions. We have also found that the average shape of knotted polymeric chains in thermal equilibrium is closely related to the ideal representation of the corresponding knot type. Our observations provide a link between ideal geometrical objects and the behaviour of seemingly disordered systems, and allow the prediction of properties of knotted polymers such as their electrophoretic mobility5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J. W. Trans. Am. Math. Soc. 30, 275–306 (1928).

    Article  Google Scholar 

  2. Jones, V. F. R. Bull. Am. Math. Soc. 12, 103–111 (1985).

    Article  Google Scholar 

  3. Freyd, P. et al. Bull. Am. Math. Soc. 12, 239–246 (1985).

    Article  Google Scholar 

  4. Vassiliev, V. A. in Theory of Singularities and its Applications (ed. Arnold, V. I.) 23–70 (Am. Math. Sco., Providence, 1990).

    Book  Google Scholar 

  5. Stasiak, A., Katritch, V., Bednar, J., Michoud, D. & Dubochet, J. Nature 384, 122 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Moffatt, H. K. Nature 347, 367–369 (1990).

    Article  ADS  Google Scholar 

  7. Chui & Moffatt, H. K. Proc. R. Soc. Lond. A 451, 609–629 (1995).

    Article  ADS  Google Scholar 

  8. Simon, J. in Mathematical Approaches to Biomolecular Structure and Dynamics (eds Mesirov, J. P., Schulten, K. & Summers, D. W.) 39–58 Springer, New York, (1996).

    Book  Google Scholar 

  9. Grosberg, A., Feigel, A. & Rabin, Y. Phys. Rev. E (in the press).

  10. Frank-Kamenetskii, M. D., Lukashin, A. V. & Voogodskii, A. V. Nature 258, 398–402 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Vologodskii, A. V., Levene, S. D., Klenin, K. V., Frank-Kamenetskii, M. & Cozzarelli, N. R. J. Mol. Biol. 227, 1224–1243 (1992).

    Article  CAS  Google Scholar 

  12. Katritch, V. et al. J. Mol. Biol. 254, 591–594 (1995).

    CAS  Google Scholar 

  13. Frank-Kamenetskii, M. D. & Vologodskii, A. V. Sov. Phys. Usp. 24, 679–696 (1981).

    Article  ADS  Google Scholar 

  14. Rolfsen, D. Knots and Links (Publish or Perish, Berkeley, 1976).

    MATH  Google Scholar 

  15. Adams, C. C. The Knot Book (Freeman, New York, 1994).

    MATH  Google Scholar 

  16. Fuller, F. B. Proc. Natl Acad. Sci. USA 68, 815–819 (1971).

    Article  ADS  CAS  Google Scholar 

  17. Bednar, J. et al. J. Mol. Biology 235, 825–847 (1994).

    Article  CAS  Google Scholar 

  18. Rybenkov, V. V., Cozzarelli, N. R. & Vologodskii, A. V. Proc. Natl Acad. Sci. USA 90, 5307–5311 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katritch, V., Bednar, J., Michoud, D. et al. Geometry and physics of knots. Nature 384, 142–145 (1996). https://doi.org/10.1038/384142a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384142a0

  • Springer Nature Limited

This article is cited by

Navigation