Skip to main content
Log in

β-Arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE ability of a system to regulate its responsiveness in the presence of a continuous stimulus, often termed desensitization, has been extensively characterized for the β2-adrenergic receptor (β2AR). β2AR signalling is rapidly attenuated through receptor phosphorylation and subsequent binding of the protein β-arrestin1,2. Ultimately the receptor undergoes internalization3,4, and although the molecular mechanism is unclear, receptor phosphorylation and β-arrestin binding have been implicated in this process5,6. Here we report that p-arrestin and arrestin-3, but not visual arrestin, promote β2AR internalization and bind with high affinity directly and stoichiometrically to clathrin, the major structural protein of coated pits. Moreover, β-arrestin/arrestin chimaeras that are defective in either β2AR or clathrin binding show a reduced ability to promote β2AR endocytosis. Immunofluorescence microscopy of intact cells indicates an agonist-dependent colocalization of the β2AR and β-arrestin with clathrin. These results show that β-arrestin functions as an adaptor in the receptor-mediated endocytosis pathway, and suggest a general mechanism for regulating the trafficking of G-protein-coupled receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sterne-Marr, R. & Benovic, J. L. Vitam. Horm. 51, 193–234 (1995).

    Article  CAS  Google Scholar 

  2. Premont, R. T., Inglese, J. & Lefkowitz, R. J. FASEB J. 9, 175–182 (1995).

    Article  CAS  Google Scholar 

  3. Yu, S. S., Lefkowitz, R. J. & Hausdorff, W. P. J. Biol. Chem. 268, 337–341 (1993).

    CAS  PubMed  Google Scholar 

  4. Pippig, S., Andexinger, S. & Lohse, M. J. Mol. Pharmacol. 47, 666–676 (1995).

    CAS  PubMed  Google Scholar 

  5. Ferguson, S. S. G. et al. J. Biol. Chem. 270, 24782–24789 (1995).

    Article  CAS  Google Scholar 

  6. Ferguson, S. S. G. et al. Science 271, 363–365 (1996).

    Article  ADS  CAS  Google Scholar 

  7. von Zastrow, M. & Kobilka, B. K. J. Biol. Chem. 269, 18448–18452 (1994).

    CAS  PubMed  Google Scholar 

  8. Sterne-Marr, R. et al. J. Biol. Chem. 268, 15640–15648 (1993).

    CAS  PubMed  Google Scholar 

  9. Schroder, S. & Ungewickell, E. J. Biol. Chem. 266, 7910–7918 (1991).

    CAS  PubMed  Google Scholar 

  10. Peeler, J. S., Donzell, W. C. & Anderson, R. G. W. J. Cell Biol. 120, 47–54 (1993).

    Article  CAS  Google Scholar 

  11. Schmid, S. L. & Rothman, J. E. J. Biol. Chem. 260, 10044–10049 (1985).

    CAS  PubMed  Google Scholar 

  12. Gurevich, V. V. et al. J. Biol. Chem. 270, 720–731 (1995).

    Article  CAS  Google Scholar 

  13. Keen, J. H. Annu. Rev. Biochem. 59, 415–438 (1990).

    Article  CAS  Google Scholar 

  14. Pearse, B. M. F. & Bretscher, M. S. Annu. Rev. Biochem. 50, 85–101 (1981).

    Article  CAS  Google Scholar 

  15. Pearse, B. M. F. EMBO J. 7, 3331–3336 (1988).

    Article  CAS  Google Scholar 

  16. Sorkin, A. & Carpenter, G. Science 261, 612–615 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Nesterov, A., Wiley, H. S. & Gill, G. N. Proc. Natl Acad. Sci. USA 92, 8719–8723 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Sorkin, A., Mazzotti, M., Sorkin, T., Scotto, L. & Beguinot, L. J. Biol. Chem. 271, 13377–13384 (1996).

    Article  CAS  Google Scholar 

  19. Santini, F. & Keen, J. H. J. Cell Biol. 132, 1025–1036 (1996).

    Article  CAS  Google Scholar 

  20. Freedman, N. J. et al. J. Biol. Chem. 270, 17953–17961 (1995).

    Article  CAS  Google Scholar 

  21. Diviani, D. et al. J. Biol. Chem. 271, 5049–5058 (1996).

    Article  CAS  Google Scholar 

  22. Gurevich, V. V. & Benovic, J. L. J. Biol. Chem. 267, 21919–21923 (1992).

    CAS  PubMed  Google Scholar 

  23. Keen, J. H., Willingham, M. C. & Pastan, I. H. Cell 16, 303–312 (1979).

    Article  CAS  Google Scholar 

  24. Goodman, O. B. & Keen, J. H. J. Biol. Chem. 270, 23768–23773 (1995).

    Article  CAS  Google Scholar 

  25. Shinohara, T. et al. Proc. Natl Acad. Sci. USA 84, 6975–6979 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. & Lefkowitz, R. J. Science 248, 1547–1550 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Dua, H. S. et al. Curr. Eye Res. 11 (suppl.), 107–111 (1992).

    Article  Google Scholar 

  28. Keen, J. H., Willingham, M. C. & Pastan, I. J. Cell Biol. 256, 2538–2544 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, O., Krupnick, J., Santini, F. et al. β-Arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450 (1996). https://doi.org/10.1038/383447a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383447a0

  • Springer Nature Limited

This article is cited by

Navigation