Skip to main content
Log in

Determination of olivine cooling rates from metal-cation ordering

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE mineral olivine—(Fe,Mg,Mn)2SiO4—is the dominant phase in the Earth's upper mantle, and is also present in a wide range of igneous rocks. Metal cations in olivine crystals are partitioned between two structurally distinct octahedral sites, a property which could in principle be used to obtain important information regarding the thermal history of the host rock. But attempts to establish the temperature and pressure dependence of cation ordering, mainly from the room-temperature structures of samples that have been annealed and quenched1–3, have yielded contradictory information. In fact, recent studies have shown that considerable re-ordering occurs during the quenching process4,5, and thus cation ordering is unlikely to be representative of high-temperature equilibration. Here we present a new model of the thermodynamics and kinetics of metal partitioning in olivine, derived from in situ neutron-diffraction measurements of cation ordering in the synthetic olivine (Fe0.5Mn0.5)2SiO4. Our results suggest that the room-temperature structure of a quenched olivine reflects the rate at which the mineral cooled. The extension of this approach to common rock-forming olivines should provide a valuable 'geospeedometer' for determining the cooling rates of rocks that have cooled relatively rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Virgo, D. & Hafner, S. S. Earth planet. Sci. Lett. 14, 305–312 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Princivalle, F. Miner. Petrol. 43, 121–129 (1990).

    Article  CAS  Google Scholar 

  3. Ottonello, G., Princivalle, F. & Della Giusta, A. Phys. Chem. Miner. 17, 301–312 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Artioli, G., Rinaldi, R., Wilson, C. C. & Zanazzi, P. F. Am. Miner. 80, 197–200 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Henderson, C. M. B., Knight, K. S., Redfern, S. A. T. & Wood, B. J. Science 271, 1713–1715 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Seifert, F. A. & Virgo, D. Science 188, 1107–1109 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Ganguly, J. & Tazzoli, V. Am. Miner. 79, 930–937 (1994) .

    CAS  Google Scholar 

  8. Kroll, H., Schlenz, H. & Phillips, M. W. Phys. Chem. Miner. 21, 555–560 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Kroll, H. & Knitter, R. Am. Miner. 76, 928–941 (1991).

    CAS  Google Scholar 

  10. Huppert, H. E. & Sparks, R. S. J. Earth planet. Sci. Lett. 92, 397–405 (1989).

    Article  ADS  Google Scholar 

  11. Gibb, F. G. F. & Henderson, C. M. B. Contr. Miner. Petrol. 109, 538–545 (1992).

    Article  ADS  Google Scholar 

  12. Marsh, B. D. J. Petrol. 30, 479–530 (1989).

    Article  ADS  Google Scholar 

  13. Carpenter, M. A., Powell, R. & Salje, E. K. H. Am. Miner. 79, 1053–1067 (1994).

    CAS  Google Scholar 

  14. Carpenter, M. A. & Salje, E. K. H. Mineralog. Mag. 53, 483–504 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Harrison, R. J. & Putnis, A. Am. Miner. (in the press).

  16. Shinno, I. J. Jap. Ass. Miner. Petrol, econ. Geol. 75, 343–352 (1980).

    Article  CAS  Google Scholar 

  17. Annersten, H., Adetunji, J. & Filippidis, A. Am. Miner. 69, 1110–1115 (1984).

    CAS  Google Scholar 

  18. Brown, G. E. Jr Rev. Miner. 5, 275–381 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redfern, S., Henderson, C., Wood, B. et al. Determination of olivine cooling rates from metal-cation ordering. Nature 381, 407–409 (1996). https://doi.org/10.1038/381407a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381407a0

  • Springer Nature Limited

Navigation