Skip to main content
Log in

Structural basis of calcium-induced E-cadherin rigidification and dimerization

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE cadherins mediate cell adhesion and play a fundamental role in normal development1. They participate in the maintenance of proper cell–cell contacts: for example, reduced levels of epithelial cadherin (E-cadherin) correlate with increased invasiveness in many human tumour cell types2,3. The cadherins typically consist of five tandemly repeated extracellular domains, a single membrane-spanning segment and a cytoplasmic region4–6. The N-terminal extracellular domains mediate cell–cell contact7while the cytoplasmic region interacts with the cytoskeleton through the catenins8. Cadherins depend on calcium for their function: removal of calcium abolishes adhesive activity, renders cadherins vulnerable to proteases (reviewed in ref. 4) and, in E-cadherin, induces a dramatic reversible conformational change in the entire extracellular region9. We report here the X-ray crystal structure at 2.0 Å resolution of the two N-terminal extracellular domains of E-cadherin in the presence of calcium. The structure reveals a two-fold symmetric dimer, each molecule of which binds a contiguous array of three bridged calcium ions. Not only do the bound calcium ions linearize and rigidity the molecule, they promote dimerization. Although the N-terminal domain of each molecule in the dimer is aligned in a parallel orientation, the interactions between them differ significantly from those found in the neural cadherin (N-cadherin) N-terminal domain (NCD1) structure10. The E-cadherin dual-domain structure reported here defines the role played by calcium in the cadherin-mediated formation and maintenance of solid tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeichi, M. Science 251, 1451–1455 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Mareel, M., Bracke, M. & Van Roy, F. Molec. Biol. Rep. 19, 45–67 (1994).

    Article  CAS  Google Scholar 

  3. Birchmeier, W. Bioessays 17, 97–99 (1995).

    Article  CAS  Google Scholar 

  4. Takeichi, M. A. Rev. Biochem. 59, 237–252 (1990).

    Article  CAS  Google Scholar 

  5. Blaschuk, O. W., Munroe, S. B. & Farookhi, R. Can. J. Oncol. 4, 291–301 (1994).

    CAS  PubMed  Google Scholar 

  6. Overduin, M. et al. Science 267, 386–389 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Nose, A., Tsuji, K. & Takeichi, M. Cell 61, 147–155 (1990).

    Article  CAS  Google Scholar 

  8. Kemler, R. Trends Genet. 9, 317–321 (1993).

    Article  CAS  Google Scholar 

  9. Pokutta, S., Herrenknecht, K., Kemler, R. & Engel, J. Eur. J. Biochem. 223, 1019–1026 (1994).

    Article  CAS  Google Scholar 

  10. Shapiro, L. et al. Nature 374, 327–337 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Tong, K. I. et al. FEBS Lett. 352, 318–322 (1994).

    Article  CAS  Google Scholar 

  12. Ozawa, M., Engel, J. & Kemler, R. Cell 63, 1033–1038 (1990).

    Article  CAS  Google Scholar 

  13. Brown, E. M., Vassilev, P. M. & Hebert, S. C. Cell 83, 679–682 (1995).

    Article  CAS  Google Scholar 

  14. Ringwald, M. et al. EMBO J. 6, 3547–3653 (1987).

    Article  Google Scholar 

  15. Overduin, M., Tong, K. I., Kay, C. M. & Ikura, M. J. Biomol. NMR. (in the press).

  16. Oda, T. et al. Proc. natn. Acad. Sci. U.S.A. 91, 1858–1862 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Risinger, J. I., Berchuck, A., Kohler, M. F. & Boyd, J. J. Nature Genet. 7, 98–102 (1994).

    Article  CAS  Google Scholar 

  18. Blaschuk, O. W., Sullivan, R., David, S. & Pouliot, Y. Devl Biol 139, 227–229 (1990).

    Article  CAS  Google Scholar 

  19. Volberg, T., Geiger, B., Kartenbeck, J. & Franke, W. W. J. Cell Biol. 102, 1832–1842 (1986).

    Article  CAS  Google Scholar 

  20. Kabsch, W. J. appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  21. Otwinowski, Z. in Proceedings of the CCP4 Study Weekend (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  22. Tesmer, J., Stemmler, T., Penner-Hahn, J., Davisson, V. & Smith, J. Proteins 18, 394–403 (1994).

    Article  CAS  Google Scholar 

  23. Furey, W. & Swaminathan, S. Meth. Enzym. (in the press).

  24. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, Acta crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  25. Brünger, A. X-PLOR, v3.1 A System for X-ray Crystallography and NMR (Yale University Press, New Haven, USA, 1992).

    Google Scholar 

  26. Evans, S. V. J. molec. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  27. Kraulis, P. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Glusker, J. P. Adv. Prot. Chem. 42, 1–76 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagar, B., Overduin, M., Ikura, M. et al. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380, 360–364 (1996). https://doi.org/10.1038/380360a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380360a0

  • Springer Nature Limited

This article is cited by

Navigation