Skip to main content
Log in

Semiconducting superlattices templated by molecular assemblies

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ORGANIC-INORGANIC nanostructured composites provide a rich source of new materials1–14 for a host of technological applications. For example, the incorporation of organic molecules in an inorganic lattice can toughen an otherwise brittle material15–17, or be used to tailor its electronic properties14, and cooperative interactions between organic and inorganic molecules are being used to generate a range of porous materials for separation and catalytic technologies4–10. Here we describe the growth of stable semiconductor–organic superlattices based on cadmium sulphide and cadmium selenide. The template for the structures is provided by a liquid-crystalline phase formed from non-ionic organic amphiphiles, water and precursor ions for the inorganic semiconductor. Precipitation of the organic–inorganic solid takes place within the ordered environment of the mesophase, and both the symmetry and long-range order of the liquid crystal are preserved. We anticipate that materials of this type can be tailored, through the electronic properties of the organic amphiphiles, for photosynthetic and photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archibald, D. D. & Mann, S. Nature 364, 430–433 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Meldrum, F. C., Wade, V. J., Nimmo, D. L., Heywood, B. R. & Mann, S. Nature 349, 684–687 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Meldrum, F. C., Heywood, B. R. & Mann, S. Science 257, 522–523 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Burkett, S. L. & Davis, M. E. Chem. Mater. 7, 920–928 (1995).

    Article  CAS  Google Scholar 

  5. Szostak, R. Handbook of Molecular Sieves (Van Nostrand Reinhold, New York, 1992).

    Google Scholar 

  6. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Beck, J. S. et al. Chem. Mater. 6, 1816–1821 (1994).

    Article  CAS  Google Scholar 

  8. Monnier, A. et al. Science 261, 1299–1303 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Huo, Q. et al. Nature 368, 317–321 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Firouzi, A. et al. Science 267, 1138–1143 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Fribreg, S. E. & Wang, J. J. Dispers. Sci. Technol. 12, 387–402 (1991).

    Article  Google Scholar 

  12. Walsh, D., Hopwood, J. D. & Mann, S. Science 264, 1576–1578 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Attard, G. S., Glyde, J. C. & Göltner, C. G. Nature 378, 366–368 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Nature 369, 467–469 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Berman, A., Addadi, L. & Weiner, S. Nature 331, 546–548 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Berman, A. et al. Science 250, 664–667 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Berman, A. et al. Science 259, 776–779 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Steigerwald, M. L. & Brus, L. E. Ace. Chem. Res. 23, 183–188 (1990).

    Article  CAS  Google Scholar 

  19. Fendler, J. H. Membrane-Mimetic Approach to Advanced Materials (Springer, Berlin, 1994).

    Book  Google Scholar 

  20. Dameron, C. T. et al. Nature 338, 596–597 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Wang, Y. & Herron, N. J. phys. Chem. 95, 525–532 (1991).

    Article  CAS  Google Scholar 

  22. Bianconi, P. A., Lin, J. & Strzelecki, A. R. Nature 349, 315–317 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Lin, J., Cates, E. & Bianconi, P. A. J. Am. chem. Soc. 116, 4738–4745 (1994).

    Article  CAS  Google Scholar 

  24. Yuan, U., Fendler, J. H. & Cabasso, I. Chem. Mater. 4, 312–318 (1992).

    Article  CAS  Google Scholar 

  25. Cummins, C. C., Schrock, R. R. & Cohen, R. E. Chem. Mater. 4, 27–30 (1992).

    Article  CAS  Google Scholar 

  26. Moffitt, M. & Eisenburg, A. Chem. Mater. 7, 1178–1185 (1995).

    Article  CAS  Google Scholar 

  27. Moffitt, M., McMahon, L., Pessel, V. & Eisenburg, A. Chem. Mater. 7, 1185–1192 (1995).

    Article  CAS  Google Scholar 

  28. Weller, H. Angew. Chem. 32, 41–53 (1993).

    Article  Google Scholar 

  29. Yang, J., Meldrum, F. C. & Fendler, J. H. J. phys. Chem. 99, 5500–5504 (1995).

    Article  CAS  Google Scholar 

  30. Facci, P., Erokhin, V., Tronin, A. & Nicolini, C. J. phys. Chem. 98, 13323–13327 (1994).

    Article  CAS  Google Scholar 

  31. Brust, M., Bethell, D., Schriffrin, D. J. & Kiely, J. K. Adv. Mater. 7, 795–797 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, P., Osenar, P. & Stupp, S. Semiconducting superlattices templated by molecular assemblies. Nature 380, 325–328 (1996). https://doi.org/10.1038/380325a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380325a0

  • Springer Nature Limited

This article is cited by

Navigation