Skip to main content
Log in

Kinetic trapping of oxygen in cell respiration

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CELL respiration in eukaryotes is catalysed by the mitochondrial enzyme cytochrome c oxidase. In bacteria there are many variants of this enzyme, all of which have a binuclear haem iron–copper centre at which O2 reduction occurs, and a low-spin haem, which serves as the immediate electron donor to this centre1. It is essential that the components of the cell respiratory system have a high affinity for oxygen because of the low concentrations of dissolved O2 in the tissues; however, the binding of O2 to the respiratory haem–copper oxidases is very weak2,3. This paradox has been attributed to kinetic trapping during fast reactions of O2 bound within the enzyme's binuclear haem iron–copper centre2. Our earlier work3 indicated that electron transfer from the low-spin haem to the oxygen-bound binuclear centre may be necessary for such kinetic oxygen trapping. Here we show that a specific decrease of this haem–haem electron transfer rate in the respiratory haem–copper oxidase from Escherichia coli leads to a corresponding decrease in the enzyme's operational steady-state affinity for O2. This demonstrates directly that fast electron transfer between the haem groups is a key process in achieving the high affinity for oxygen in cell respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babcock, G. T. & Wikström, M. Nature 356, 301–309 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Chance, B., Saronio, C. & Leigh, J. S. Jr J. biol. Chem. 250, 9226–9237 (1975).

    CAS  PubMed  Google Scholar 

  3. Verkhovsky, M. I., Morgan, J. E. & Wikström, M. Biochemistry 33, 3079–3086 (1994).

    Article  CAS  Google Scholar 

  4. Chance, B. J. gen. Physiol. 49, 163–188 (1965).

    Article  CAS  Google Scholar 

  5. Petersen, L. C., Nicholls, P. & Degn, H. Biochem. J. 142, 247–252 (1974).

    Article  CAS  Google Scholar 

  6. Puustinen, A. & Wikström, M. Proc. natn. Acad. Sci. U.S.A. 88, 6122–6126 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Puustinen, A. et al. Biochemistry 31, 10363–10369 (1992).

    Article  CAS  Google Scholar 

  8. Morgan, J. E., Verkhovsky, M, I., Puustinen, A. & Wikström, M. Biochemistry 32, 11412–11418 (1993).

    Article  Google Scholar 

  9. Svensson, M. & Nilsson, T. Biochemistry 32, 5442–5447 (1993).

    Article  CAS  Google Scholar 

  10. Hill, B. C. & Greenwood, C. Biochem. J. 218, 913–921 (1984).

    Article  CAS  Google Scholar 

  11. Oliveberg, M. & Malmström, B. G. Biochemistry 30, 7053–7057 (1991).

    Article  CAS  Google Scholar 

  12. Lemieux, L. J., Calhoun, M. W., Thomas, J. W., Ingledew, W. J. & Gennis, R. B. J. biol. Chem. 267, 2105–2113 (1992).

    CAS  PubMed  Google Scholar 

  13. Berry, E. A. & Trumpower, B. L. Analyt. Biochem. 161, 1–15 (1987).

    Article  CAS  Google Scholar 

  14. Provincer, S. W. & Vogel, R. H. in Progress in Scientific Computing Vol. 2 (eds Deuflhard, P. & Hairer, E.) 304–319 (Birkhäuser, Boston,1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkhovsky, M., Morgan, J., Puustinen, A. et al. Kinetic trapping of oxygen in cell respiration. Nature 380, 268–270 (1996). https://doi.org/10.1038/380268a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380268a0

  • Springer Nature Limited

This article is cited by

Navigation